O'Brien John
The Richard S. Ruiz, M.D. Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.024, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
Curr Opin Neurobiol. 2014 Dec;29:64-72. doi: 10.1016/j.conb.2014.05.011. Epub 2014 Jun 21.
A wealth of research has revealed that electrical synapses in the central nervous system exhibit a high degree of plasticity. Several recent studies, particularly in the retina and inferior olive, highlight this plasticity. Three classes of mechanisms can alter electrical coupling over time courses ranging from milliseconds to days. Changes of membrane conductance through synaptic input or spiking activity shunt current and decouple neurons on the millisecond time scale. Such activity can also alter coupling symmetry, rectifying electrical synapses. More stable rectification can be accomplished through molecular asymmetry of the synapse itself. On the minutes time scale, changes in connexin phosphorylation can change coupling quasi-stably with an order of magnitude dynamic range. On the hours to days time scale, changes in expression level of connexins alter coupling through the course of circadian time, over developmental time, or in response to tissue injury. Combined, all of these mechanisms allow electrical coupling to be highly dynamic, changing in response to demands at the whole network level, in small portions of a network, or at the level of an individual synapse.
大量研究表明,中枢神经系统中的电突触具有高度可塑性。最近的几项研究,特别是在视网膜和下橄榄核中的研究,突出了这种可塑性。三类机制可在从毫秒到数天的时间进程中改变电耦合。通过突触输入或尖峰活动改变膜电导会在毫秒时间尺度上分流电流并使神经元解耦。这种活动还可改变耦合对称性,使电突触整流。更稳定的整流可通过突触本身的分子不对称来实现。在分钟时间尺度上,连接蛋白磷酸化的变化可在一个数量级的动态范围内准稳定地改变耦合。在数小时到数天的时间尺度上,连接蛋白表达水平的变化会在昼夜节律时间进程中、发育过程中或响应组织损伤时改变耦合。综合起来,所有这些机制使电耦合具有高度动态性,能够根据整个网络水平、网络的小部分或单个突触水平的需求而变化。