Suppr超能文献

使用C-CDA和应用程序编程接口实现一个可扩展的、基于网络的、用于慢性肾脏病的自动化临床决策支持风险预测工具。

Implementation of a scalable, web-based, automated clinical decision support risk-prediction tool for chronic kidney disease using C-CDA and application programming interfaces.

作者信息

Samal Lipika, D'Amore John D, Bates David W, Wright Adam

机构信息

Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

J Am Med Inform Assoc. 2017 Nov 1;24(6):1111-1115. doi: 10.1093/jamia/ocx065.

Abstract

BACKGROUND AND OBJECTIVE

Clinical decision support tools for risk prediction are readily available, but typically require workflow interruptions and manual data entry so are rarely used. Due to new data interoperability standards for electronic health records (EHRs), other options are available. As a clinical case study, we sought to build a scalable, web-based system that would automate calculation of kidney failure risk and display clinical decision support to users in primary care practices.

MATERIALS AND METHODS

We developed a single-page application, web server, database, and application programming interface to calculate and display kidney failure risk. Data were extracted from the EHR using the Consolidated Clinical Document Architecture interoperability standard for Continuity of Care Documents (CCDs). EHR users were presented with a noninterruptive alert on the patient's summary screen and a hyperlink to details and recommendations provided through a web application. Clinic schedules and CCDs were retrieved using existing application programming interfaces to the EHR, and we provided a clinical decision support hyperlink to the EHR as a service.

RESULTS

We debugged a series of terminology and technical issues. The application was validated with data from 255 patients and subsequently deployed to 10 primary care clinics where, over the course of 1 year, 569 533 CCD documents were processed.

CONCLUSIONS

We validated the use of interoperable documents and open-source components to develop a low-cost tool for automated clinical decision support. Since Consolidated Clinical Document Architecture-based data extraction extends to any certified EHR, this demonstrates a successful modular approach to clinical decision support.

摘要

背景与目的

用于风险预测的临床决策支持工具虽已广泛可得,但通常需要打断工作流程并手动输入数据,因此很少被使用。由于电子健康记录(EHR)有了新的数据互操作性标准,便有了其他选择。作为一个临床案例研究,我们试图构建一个可扩展的基于网络的系统,该系统能自动计算肾衰竭风险,并向基层医疗实践中的用户展示临床决策支持。

材料与方法

我们开发了一个单页应用程序、网络服务器、数据库和应用程序编程接口,以计算和显示肾衰竭风险。使用《连续医疗文档的统一临床文档架构互操作性标准》(CCDs)从电子健康记录中提取数据。电子健康记录用户在患者总结屏幕上会收到一个非干扰性警报,以及一个指向通过网络应用程序提供的详细信息和建议的超链接。使用现有的电子健康记录应用程序编程接口检索诊所日程安排和CCDs,并且我们提供了一个作为服务的临床决策支持超链接到电子健康记录。

结果

我们调试了一系列术语和技术问题。该应用程序用255名患者的数据进行了验证,随后部署到10个基层医疗诊所,在1年的时间里,共处理了569533份CCDs文档。

结论

我们验证了使用可互操作的文档和开源组件来开发一种用于自动化临床决策支持的低成本工具。由于基于统一临床文档架构的数据提取可扩展到任何经过认证的电子健康记录,这展示了一种成功的临床决策支持模块化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee71/6580936/1b015f99378b/ocx065f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验