Xu Yiping, Li Xuebiao, Kong Minjian, Jiang Daming, Dong Aiqiang, Shen Zhonghua, Duan Qunjun
*Children' Hospital Zhejiang University School of Medicine Hangzhou 310003, China.
†Cardiothoracic Surgery, Department of Second Affiliated Hospital, School of Medicine, Zhejiang University, Number 88, Jie Fang Road, Hang Zhou, Zhejiang Province 310009, China.
Biosci Rep. 2014 Oct 2;34(5):e00140. doi: 10.1042/BSR20130107.
Recent studies have demonstrated a number of molecular mechanisms contributing to the initiation of cardiac hypertrophy response to pressure overload. IGF1R (insulin-like growth factor-1 receptor), an important oncogene, is overexpressed in hypertrophic heart and mediates the hypertrophic pathology process. In this study, we applied with liposomal magnetofection that potentiated gene transfection by applying an external magnetic field to enhance its transfection efficiency. Liposomal magnetofection provided high efficiency in transgene expression in vivo. In vivo, IGF1R-specific-shRNA (small-hairpin RNA) by magnetofection inhibited IGF1R protein expression by 72.2 ± 6.8, 80.7 ± 9.6 and 84.5 ± 5.6%, at 24, 48 and 72 h, respectively, after pGFPshIGF1R injection, indicating that liposomal magnetofection is a promising method that allows the targeting of gene therapy for heart failure. Furthermore, we found that the treated animals (liposomal magnetofection with shIGF1R) showed reduced septal and posterior wall thickness, reduced HW:BWs (heart weight-to-body weights) compared with controls. Moreover, we also found that liposomal magnetofection-based shIGF1R transfection decreased the expression level of p-ERK (phosphorylated extracellular-signal-regulated kinase)1/2, p-AKT1 (phosphorylated protein kinase B1) compared with untreated hearts. These results suggested that liposomal magnetofection-mediated IGF1R-specific-shRNA may be a promising method, and suppression the IGF1R expression inhibited norepinephrine-induced cardiac hypertrophic process via inhibiting PI3K (phosphoinositide 3-kinase)/AKT pathway.
最近的研究已经证明了一些分子机制,这些机制有助于引发心脏对压力过载的肥大反应。IGF1R(胰岛素样生长因子-1受体)是一种重要的癌基因,在肥厚性心脏中过度表达,并介导肥厚性病理过程。在本研究中,我们应用了脂质体磁转染技术,该技术通过施加外部磁场增强基因转染,从而提高其转染效率。脂质体磁转染在体内转基因表达方面具有高效性。在体内,注射pGFPshIGF1R后24、48和72小时,通过磁转染的IGF1R特异性短发夹RNA(small-hairpin RNA)分别将IGF1R蛋白表达抑制了72.2±6.8%、80.7±9.6%和84.5±5.6%,这表明脂质体磁转染是一种有前景的方法,可用于心力衰竭的基因治疗靶向。此外,我们发现与对照组相比,接受治疗的动物(用shIGF1R进行脂质体磁转染)的室间隔和后壁厚度减小,心脏重量与体重之比(HW:BWs)降低。而且,我们还发现与未处理的心脏相比,基于脂质体磁转染的shIGF1R转染降低了p-ERK(磷酸化细胞外信号调节激酶)1/2、p-AKT1(磷酸化蛋白激酶B1)的表达水平。这些结果表明,脂质体磁转染介导的IGF1R特异性短发夹RNA可能是一种有前景的方法,抑制IGF1R表达可通过抑制PI3K(磷脂酰肌醇3-激酶)/AKT途径抑制去甲肾上腺素诱导的心脏肥厚过程。