Moore Shannon R, Saidel Gerald M, Knothe Ulf, Knothe Tate Melissa L
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America.
Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, United States of America.
PLoS Comput Biol. 2014 Jun 26;10(6):e1003604. doi: 10.1371/journal.pcbi.1003604. eCollection 2014 Jun.
The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms.
在骨骼发育和骨折愈合的背景下,骨骼生成与适应过程中力学与生物学之间的联系已得到充分研究。然而,要预测出生后缺损部位的组织生成以及时空愈合情况,就需要利用实验和临床参数对机械生物学相互作用进行定量评估。为填补当前这一知识空白,本研究旨在开发一种机械数学模型,该模型利用骨形态发生蛋白(BMP)来代表一类可能协调骨愈合的因子,以此预测组织生成情况。具体而言,我们构建了一个机械数学模型,用于预测在被骨膜包围并通过髓内钉固定的长骨缺损中,骨膜祖细胞的组织生成动态。与新生组织生成相关的新兴材料特性和力学环境会影响骨膜内祖细胞所感知的应变刺激。利用机械有限元模型,可根据新兴的新生组织特性预测骨膜表面应变。然后将应变输入到一个机械数学模型中,在该模型中,BMP - 2产生的机械调节介导细胞增殖、分化和组织生成速率,从而预测愈合结果。一种参数化方法能够根据距骨膜的径向距离和时间,对软骨内组织再生进行空间和时间预测,再生情况通过软骨和矿化骨的面积来评估。将模型结果与之前在一个常见绵羊模型中进行的两项骨膜介导骨再生研究的组织学结果进行比较,结果表明,纳入机械反馈的机械模型成功预测了骨组织再生的模式(空间)和趋势(时间)。这里提出的新型模型框架整合了一个基于骨膜祖细胞机械敏感性的机械反馈系统,该系统能够在多个长度和时间尺度上对组织再生进行建模和预测。通过结合计算、物理和工程科学方法,该模型平台提供了一种在计算机上测试新假设并阐明有利于内源性组织生成条件的手段。下一代模型将有助于揭示软骨内和成膜内机制在骨生成方面的内在差异。