Elmadhun Nassrene Y, Sabe Ashraf A, Lassaletta Antonio D, Chu Louis M, Sellke Frank W
Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island.
Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island.
J Surg Res. 2014 Nov;192(1):50-8. doi: 10.1016/j.jss.2014.05.005. Epub 2014 May 17.
Epidemiologic data has shown that metformin confers a survival advantage in patients with cardiovascular disease. Although the underlying cardioprotective mechanism is unclear, it appears to be independent of metformin's insulin-sensitizing effect. The purpose of this study was to evaluate the effect of metformin on the apoptosis pathway in the ischemic and nonischemic cardiac tissue in a swine model of metabolic syndrome.
Ossabaw miniswine were fed either a regular diet (Ossabaw control, n = 8), a high-cholesterol diet (Ossabaw high cholesterol, n = 8), or a high-cholesterol diet supplemented with metformin (Ossabaw high-cholesterol metformin, n = 8). After 9 wk, all animals underwent placement of an ameroid constrictor to the left circumflex coronary artery to induce chronic ischemia. Seven weeks after ameroid placement, animals underwent cardiac harvest.
In the chronically ischemic myocardium, metformin significantly upregulates prosurvival proteins: extracellular signal-regulated kinases, nuclear factor κB, phosphorylated endothelial nitric oxide synthase, and P38. Metformin also significantly inhibits or downregulates proapoptosis proteins: FOXO3 and caspase 3. Metformin decreased the percent apoptotic cells in the ischemic and nonischemic myocardium. There was no difference in arteriolar density, capillary density, intramyocardial fibrosis, or collagen deposition in the ischemic or nonischemic myocardium.
Metformin selectively alters the apoptosis pathway by inhibiting FOXO3 and decreasing the active form of caspase 3, cleaved caspase 3. Metformin also upregulates mitogen-activated kinase proteins p38 and extracellular signal-regulated protein kinases 1 and 2, which are considered cardioprotective during ischemic preconditioning. Perhaps, the altered activation of the apoptosis pathway in ischemic myocardium is one mechanism by which metformin is cardioprotective.
流行病学数据表明,二甲双胍可使心血管疾病患者获得生存优势。尽管其潜在的心脏保护机制尚不清楚,但似乎与二甲双胍的胰岛素增敏作用无关。本研究的目的是评估二甲双胍对代谢综合征猪模型中缺血和非缺血心脏组织凋亡途径的影响。
给奥萨巴小型猪分别喂食常规饮食(奥萨巴对照组,n = 8)、高胆固醇饮食(奥萨巴高胆固醇组,n = 8)或添加二甲双胍的高胆固醇饮食(奥萨巴高胆固醇二甲双胍组,n = 8)。9周后,所有动物均接受在左旋冠状动脉放置阿梅罗氏缩窄环以诱导慢性缺血。放置阿梅罗氏缩窄环7周后,对动物进行心脏取材。
在慢性缺血心肌中,二甲双胍显著上调促生存蛋白:细胞外信号调节激酶、核因子κB、磷酸化内皮型一氧化氮合酶和P38。二甲双胍还显著抑制或下调促凋亡蛋白:FOXO3和半胱天冬酶3。二甲双胍降低了缺血和非缺血心肌中的凋亡细胞百分比。缺血或非缺血心肌中的小动脉密度、毛细血管密度、心肌内纤维化或胶原沉积无差异。
二甲双胍通过抑制FOXO3并降低半胱天冬酶3的活性形式(裂解的半胱天冬酶3)选择性地改变凋亡途径。二甲双胍还上调有丝分裂原活化激酶蛋白p38以及细胞外信号调节蛋白激酶1和2,这些蛋白在缺血预处理期间被认为具有心脏保护作用。也许,缺血心肌中凋亡途径的改变激活是二甲双胍发挥心脏保护作用的一种机制。