Suppr超能文献

细菌伴侣蛋白GroEL的C末端尾巴通过直接改变底物蛋白的构象来刺激蛋白质折叠。

The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein.

作者信息

Weaver Jeremy, Rye Hays S

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.

出版信息

J Biol Chem. 2014 Aug 15;289(33):23219-23232. doi: 10.1074/jbc.M114.577205. Epub 2014 Jun 25.

Abstract

Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.

摘要

许多重要的细胞蛋白质仅在伴侣蛋白机器(如大肠杆菌的GroEL - GroES系统)的协助下才能折叠。然而,GroEL - GroES协助蛋白质折叠的机制细节仍存在争议。我们之前证明,GroEL - GroES通过解折叠增强动力学捕获的底物蛋白的有效折叠,其中结合能和ATP水解能都用于破坏抑制性错误折叠状态。在这里,我们表明GroEL亚基内在无序但高度保守的C末端序列直接有助于底物蛋白的解折叠。C末端与非天然底物蛋白之间的相互作用改变了底物蛋白在GroEL顶端表面的结合位置。C末端尾巴在底物蛋白被捕获并包裹在GroEL环上的过程中也会影响其构象状态。重要的是,去除C末端会导致整体折叠变慢,减少迅速进入有效折叠途径的底物蛋白比例,并减缓在GroEL - GroES腔内发生的几个动力学上不同的折叠转变。因此,GroEL保守的C末端尾巴在伴侣蛋白反应循环从开始到结束的整个过程中对蛋白质折叠都很重要。

相似文献

2
Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding.
J Biol Chem. 2013 Oct 25;288(43):30944-55. doi: 10.1074/jbc.M113.480178. Epub 2013 Sep 10.
3
Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):15-20. doi: 10.1016/j.bbrc.2015.08.034. Epub 2015 Aug 11.
4
Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates.
J Biol Chem. 2014 Jan 3;289(1):286-98. doi: 10.1074/jbc.M113.518373. Epub 2013 Nov 18.
5
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.
J Biol Chem. 2008 Aug 29;283(35):23774-81. doi: 10.1074/jbc.M802542200. Epub 2008 Jun 20.
6
Triggering protein folding within the GroEL-GroES complex.
J Biol Chem. 2008 Nov 14;283(46):32003-13. doi: 10.1074/jbc.M802898200. Epub 2008 Sep 9.
8
Molecular chaperone GroEL/ES: unfolding and refolding processes.
Biochemistry (Mosc). 2013 Dec;78(13):1405-14. doi: 10.1134/S0006297913130038.
9
Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
J Mol Biol. 1999 Apr 2;287(3):627-44. doi: 10.1006/jmbi.1999.2591.
10
Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):72-5. doi: 10.1016/j.bbrc.2015.08.108. Epub 2015 Aug 29.

引用本文的文献

1
A low-complexity linker as a driver of intra- and intermolecular interactions in DNAJB chaperones.
Nat Commun. 2025 May 31;16(1):5070. doi: 10.1038/s41467-025-60063-2.
3
Structural basis of substrate progression through the bacterial chaperonin cycle.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2308933120. doi: 10.1073/pnas.2308933120. Epub 2023 Dec 8.
5
A diminished hydrophobic effect inside the GroEL/ES cavity contributes to protein substrate destabilization.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2213170119. doi: 10.1073/pnas.2213170119. Epub 2022 Nov 21.
6
The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones.
Front Mol Biosci. 2022 Jul 7;9:915307. doi: 10.3389/fmolb.2022.915307. eCollection 2022.
7
Protein chain collapse modulation and folding stimulation by GroEL-ES.
Sci Adv. 2022 Mar 4;8(9):eabl6293. doi: 10.1126/sciadv.abl6293.
8
Cryo-EM structures of GroEL:ES with RuBisCO visualize molecular contacts of encapsulated substrates in a double-cage chaperonin.
iScience. 2021 Dec 27;25(1):103704. doi: 10.1016/j.isci.2021.103704. eCollection 2022 Jan 21.
9
Structural and Computational Study of the GroEL-Prion Protein Complex.
Biomedicines. 2021 Nov 9;9(11):1649. doi: 10.3390/biomedicines9111649.
10
Improved high-temperature ethanol production from sweet sorghum juice using Zymomonas mobilis overexpressing groESL genes.
Appl Microbiol Biotechnol. 2021 Dec;105(24):9419-9431. doi: 10.1007/s00253-021-11686-0. Epub 2021 Nov 17.

本文引用的文献

1
Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.
PLoS Comput Biol. 2013;9(11):e1003269. doi: 10.1371/journal.pcbi.1003269. Epub 2013 Nov 7.
2
Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4298-305. doi: 10.1073/pnas.1318862110. Epub 2013 Oct 28.
3
Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4289-97. doi: 10.1073/pnas.1317702110. Epub 2013 Oct 28.
4
Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding.
J Biol Chem. 2013 Oct 25;288(43):30944-55. doi: 10.1074/jbc.M113.480178. Epub 2013 Sep 10.
5
GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates.
J Mol Biol. 2013 Sep 23;425(18):3403-14. doi: 10.1016/j.jmb.2013.06.028. Epub 2013 Jun 28.
6
Visualizing GroEL/ES in the act of encapsulating a folding protein.
Cell. 2013 Jun 6;153(6):1354-65. doi: 10.1016/j.cell.2013.04.052.
7
Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15740-5. doi: 10.1073/pnas.1204547109. Epub 2012 Sep 7.
8
FoldEco: a model for proteostasis in E. coli.
Cell Rep. 2012 Mar 29;1(3):265-76. doi: 10.1016/j.celrep.2012.02.011.
9
Molecular chaperones in protein folding and proteostasis.
Nature. 2011 Jul 20;475(7356):324-32. doi: 10.1038/nature10317.
10
The effect of chaperonin buffering on protein evolution.
Genome Biol Evol. 2010;2:609-19. doi: 10.1093/gbe/evq045. Epub 2010 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验