Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15740-5. doi: 10.1073/pnas.1204547109. Epub 2012 Sep 7.
Chaperonin GroEL mediates the folding of protein encapsulated in a GroES-sealed cavity (cage). Recently, a critical role of negative charge clusters on the cage wall in folding acceleration was proposed based on experiments using GroEL single-ring (SR) mutants SR1 and SRKKK2 [Tang YC, et al. (2006) Cell 125:903-914; Chakraborty K, et al. (2010) Cell 142:112-122]. Here, we revisited these experiments and discovered several inconsistencies. (i) SR1 was assumed to bind to GroES stably and to mediate single-round folding in the cage. However, we show that SR1 repeats multiple turnovers of GroES release/binding coupled with ATP hydrolysis. (ii) Although the slow folding observed for a double-mutant of maltose binding protein (DMMBP) by SRKKK2 was attributed to mutations that neutralize negative charges on the cage wall, we found that the majority of DMMBP escape from SRKKK2 and undergo spontaneous folding in the bulk medium. (iii) An osmolyte, trimethylamine N-oxide, was reported to accelerate SRKKK2-mediated folding of DMMBP by mimicking the effect of cage-wall negative charges of WT GroEL and ordering the water structure to promote protein compaction. However, we demonstrate that in-cage folding by SRKKK2 is unaffected by trimethylamine N-oxide. (iv) Although it was reported that SRKKK2 lost the ability to assist the folding of ribulose-1,5-bisphosphate carboxylase/oxygenase, we found that SRKKK2 retains this ability. Our results argue against the role of the negative charges on the cage wall of GroEL in protein folding. Thus, in chaperonin studies, folding kinetics need to be determined from the fraction of the real in-cage folding.
伴侣蛋白 GroEL 介导被 GroES 密封腔(笼)包裹的蛋白质的折叠。最近,基于使用 GroEL 单环(SR)突变体 SR1 和 SRKKK2 的实验,提出了笼壁上的负电荷簇在折叠加速中的关键作用[Tang YC 等人,(2006)Cell 125:903-914;Chakraborty K 等人,(2010)Cell 142:112-122]。在这里,我们重新研究了这些实验,发现了一些不一致之处。(i)SR1 被假定与 GroES 稳定结合,并在笼中介导单轮折叠。然而,我们表明,SR1 重复多次 GroES 释放/结合伴随着 ATP 水解的循环。(ii)尽管 SRKKK2 对麦芽糖结合蛋白(DMMBP)的双突变体观察到的折叠缓慢归因于突变使笼壁上的负电荷中和,但我们发现,大多数 DMMBP 从 SRKKK2 中逃脱,并在体相介质中自发折叠。(iii)报道称,三甲基胺 N-氧化物作为笼壁负电荷的模拟物,通过改变水的结构促进蛋白质的压缩,从而加速 SRKKK2 介导的 DMMBP 折叠。然而,我们证明,SRKKK2 笼内折叠不受三甲基胺 N-氧化物的影响。(iv)尽管报道称 SRKKK2 失去了协助核酮糖-1,5-二磷酸羧化酶/加氧酶折叠的能力,但我们发现 SRKKK2 保留了这种能力。我们的结果反对 GroEL 笼壁负电荷在蛋白质折叠中的作用。因此,在伴侣蛋白研究中,需要从真实笼内折叠的分数来确定折叠动力学。