Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
Cell Rep. 2012 Mar 29;1(3):265-76. doi: 10.1016/j.celrep.2012.02.011.
To gain insight into the interplay of processes and species that maintain a correctly folded, functional proteome, we have developed a computational model called FoldEco. FoldEco models the cellular proteostasis network of the E. coli cytoplasm, including protein synthesis, degradation, aggregation, chaperone systems, and the folding characteristics of protein clients. We focused on E. coli because much of the needed input information--including mechanisms, rate parameters, and equilibrium coefficients--is available, largely from in vitro experiments; however, FoldEco will shed light on proteostasis in other organisms. FoldEco can generate hypotheses to guide the design of new experiments. Hypothesis generation leads to system-wide questions and shows how to convert these questions to experimentally measurable quantities, such as changes in protein concentrations with chaperone or protease levels, which can then be used to improve our current understanding of proteostasis and refine the model. A web version of FoldEco is available at http://foldeco.scripps.edu.
为了深入了解维持正确折叠和功能蛋白质组的过程和物种的相互作用,我们开发了一种名为 FoldEco 的计算模型。FoldEco 模拟了大肠杆菌细胞质的细胞蛋白质稳态网络,包括蛋白质合成、降解、聚集、伴侣系统以及蛋白质客户的折叠特性。我们专注于大肠杆菌,因为大部分所需的输入信息——包括机制、速率参数和平衡系数——都是可用的,主要来自体外实验;然而,FoldEco 将阐明其他生物体的蛋白质稳态。FoldEco 可以生成假设来指导新实验的设计。假设生成导致系统范围的问题,并展示如何将这些问题转换为可实验测量的量,例如与伴侣或蛋白酶水平相关的蛋白质浓度变化,然后可以用来提高我们对蛋白质稳态的现有理解并改进模型。FoldEco 的网络版本可在 http://foldeco.scripps.edu 上获得。