ETH Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, CH-4058 Basel, Switzerland.
InSphero AG, Wagistrasse 27, CH-8952 Schlieren, Switzerland.
Nat Commun. 2014 Jun 30;5:4250. doi: 10.1038/ncomms5250.
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
将多个三维微组织整合到微流控网络中,可以深入了解生物体的不同器官或组织如何相互作用。在这里,我们提出了一个平台,将用于多细胞球体形成的悬滴技术扩展到多功能复杂的微流控网络中。该平台设计为完全开放的、“悬挂”的微流控系统,位于基底的底部,具有高度灵活的微组织排列和连接,同时制造简单,操作稳健。不同细胞类型的多个球体可在同一平台上并行形成;然后通过重新配置流体网络,以生理顺序连接不同的组织,进行多组织实验。通过悬滴精确控制液体流动,从而实现营养供应、物质剂量和器官间代谢通讯。该平台能够在同一芯片上进行并行微组织形成,然后用于复杂的多组织实验,为“芯片上的器官”相关研究提供了一种很有前途的技术。