Suppr超能文献

将统计方法与基于个体的方法相结合用于动物运动建模。

Uniting statistical and individual-based approaches for animal movement modelling.

作者信息

Latombe Guillaume, Parrott Lael, Basille Mathieu, Fortin Daniel

机构信息

School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Département de Géographie, Université de Montréal, Montréal, Québec, Canada.

Earth and Environmental Sciences and Biology Units, The University of British Columbia, Kelowna, British Columbia, Canada.

出版信息

PLoS One. 2014 Jun 30;9(6):e99938. doi: 10.1371/journal.pone.0099938. eCollection 2014.

Abstract

The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.

摘要

它们内部状态和环境的动态特性直接塑造了动物的空间行为,并在自然系统的更广泛尺度上产生涌现特性。然而,将这些动态特征纳入栖息地选择研究仍然具有挑战性,这是因为获取内部状态的实地工作几乎不可能实现,而且当前的统计模型无法产生动态输出。为了解决这些问题,我们开发了一种强大的方法,该方法结合了统计建模和基于个体的建模。使用统计技术对基于个体的模型进行正向建模,相比于纯逆向建模技术,在参数化方面具有更快的优势,并且能够对参数进行稳健选择。利用在魁北克监测的北美驯鹿的GPS位置,基于在低涌现水平上考虑动态变量的生成机制对北美驯鹿的运动进行建模。通过在并行子模型中复制真实个体的运动来获取这些变量,然后使用步长选择函数对运动参数进行实证参数化。最终的基于个体的模型使用k折交叉验证和涌现模式验证进行了验证,并针对两种不同的情景进行了测试,这两种情景下硬木侵占情况不同。我们的结果突出了栖息地选择中的功能响应,这表明我们的方法能够捕捉自然系统的复杂性,并充分提供了关于系统未来可能状态的预测,以应对不同的管理计划。这对于测试与实际系统中尚未观察到的环境配置相对应的情景的长期影响尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d59e/4076191/83956d256663/pone.0099938.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验