Department of Chemistry.
Department of Chemistry, Boston University, Boston, MA 02215; and.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10161-6. doi: 10.1073/pnas.1405983111. Epub 2014 Jun 30.
Anaerobic degradation of the environmental pollutant toluene is initiated by the glycyl radical enzyme benzylsuccinate synthase (BSS), which catalyzes the radical addition of toluene to fumarate, forming benzylsuccinate. We have determined crystal structures of the catalytic α-subunit of BSS with its accessory subunits β and γ, which both bind a [4Fe-4S] cluster and are essential for BSS activity in vivo. We find that BSSα has the common glycyl radical enzyme fold, a 10-stranded β/α-barrel that surrounds the glycyl radical cofactor and active site. Both accessory subunits β and γ display folds related to high potential iron-sulfur proteins but differ substantially from each other in how they interact with the α-subunit. BSSγ binds distally to the active site, burying a hydrophobic region of BSSα, whereas BSSβ binds to a hydrophilic surface of BSSα that is proximal to the active site. To further investigate the function of BSSβ, we determined the structure of a BSSαγ complex. Remarkably, we find that the barrel partially opens, allowing the C-terminal region of BSSα that houses the glycyl radical to shift within the barrel toward an exit pathway. The structural changes that we observe in the BSSαγ complex center around the crucial glycyl radical domain, thus suggesting a role for BSSβ in modulating the conformational dynamics required for enzyme activity. Accompanying proteolysis experiments support these structural observations.
环境污染物甲苯的厌氧降解是由甘氨酰基自由基酶苄基琥珀酸合酶(BSS)启动的,该酶催化甲苯与富马酸的自由基加成,形成苄基琥珀酸。我们已经确定了 BSS 的催化α-亚基与其辅助亚基β和γ的晶体结构,这两个亚基都结合了一个[4Fe-4S]簇,并且对 BSS 在体内的活性是必不可少的。我们发现 BSSα 具有常见的甘氨酰基自由基酶折叠结构,一个由 10 股β/α-桶组成的,围绕甘氨酰基自由基辅因子和活性位点。两个辅助亚基β和γ都显示出与高潜力铁硫蛋白相关的折叠结构,但它们与α-亚基的相互作用方式有很大的不同。BSSγ 与活性位点远端结合,掩盖了 BSSα 的一个疏水区,而 BSSβ 与 BSSα 的亲水表面结合,该表面靠近活性位点。为了进一步研究 BSSβ 的功能,我们确定了 BSSαγ 复合物的结构。值得注意的是,我们发现桶部分打开,允许 BSSα 中容纳甘氨酰基自由基的 C 端区域在桶内向出口途径移动。我们在 BSSαγ 复合物中观察到的结构变化集中在关键的甘氨酰基自由基结构域周围,因此表明 BSSβ 在调节酶活性所需的构象动力学方面发挥作用。伴随的蛋白水解实验支持了这些结构观察。