Wu Ziheng, Xu Zhiliang, Kim Oleg, Alber Mark
Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.
Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021). doi: 10.1098/rsta.2013.0380.
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet-platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor-ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific.
当血管破裂或发炎时,人体会迅速形成凝块以限制失血来做出反应。血小板通过血小板与血小板之间的黏附、在受损内皮上的 tethering 和滚动,在血管损伤部位聚集,这是血凝块形成的关键初始步骤。本文引入并使用了一种新型的三维多尺度模型,以模拟在不同血流剪切速率下,可变形血小板在血管损伤部位的受体介导黏附。该模型的新颖之处在于基于一种新方法,将对早期凝块形成至关重要的三个生物尺度的子模型进行耦合:用于表示血小板生理弹性特性的新型混合细胞膜子模型、用于描述细胞黏附动力学的随机受体-配体结合子模型以及用于模拟血流的格子玻尔兹曼子模型。在 GPU 集群上进行模型实现显著提高了模拟性能。预测模型模拟表明,血小板变形、血管壁附近血小板之间的相互作用以及功能性 GPIbα 血小板受体的数量在血小板黏附到损伤部位中起重要作用。功能性 GPIbα 血小板受体数量的变化以及血小板硬度的变化可以代表降低或增强血小板活性的特定药物的作用。因此,预测模拟可以改进对新药物靶点的搜索,并有助于针对血栓形成患者进行个性化治疗。