Wu Junjun, Zhou Tiantian, Du Guocheng, Zhou Jingwen, Chen Jian
School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, China.
PLoS One. 2014 Jul 2;9(7):e101492. doi: 10.1371/journal.pone.0101492. eCollection 2014.
Due to increasing concerns about food safety and environmental issues, bio-based production of flavonoids from safe, inexpensive, and renewable substrates is increasingly attracting attention. Here, the complete biosynthetic pathway, consisting of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydrogenase (CM/PDH), tyrosine ammonia lyase (TAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), malonate synthetase, and malonate carrier protein, was constructed using pre-made modules to overproduce (2S)-naringenin from D-glucose. Modular pathway engineering strategies were applied to the production of the flavonoid precursor (2S)-naringenin from L-tyrosine to investigate the metabolic space for efficient conversion. Modular expression was combinatorially tuned by modifying plasmid gene copy numbers and promoter strengths to identify an optimally balanced pathway. Furthermore, a new modular pathway from D-glucose to L-tyrosine was assembled and re-optimized with the identified optimal modules to enable de novo synthesis of (2S)-naringenin. Once this metabolic balance was achieved, the optimum strain was capable of producing 100.64 mg/L (2S)-naringenin directly from D-glucose, which is the highest production titer from D-glucose in Escherichia coli. The fermentation system described here paves the way for the development of an economical process for microbial production of flavonoids.
由于对食品安全和环境问题的担忧日益增加,利用安全、廉价且可再生的底物进行类黄酮的生物基生产越来越受到关注。在此,使用预制模块构建了完整的生物合成途径,该途径由3-脱氧-D-阿拉伯庚酮糖酸7-磷酸合酶(DAHPS)、分支酸变位酶/预苯酸脱氢酶(CM/PDH)、酪氨酸解氨酶(TAL)、4-香豆酸:辅酶A连接酶(4CL)、查尔酮合酶(CHS)、查尔酮异构酶(CHI)、丙二酸合成酶和丙二酸载体蛋白组成,用于从D-葡萄糖过量生产(2S)-柚皮素。模块化途径工程策略被应用于从L-酪氨酸生产类黄酮前体(2S)-柚皮素,以研究有效转化的代谢空间。通过修改质粒基因拷贝数和启动子强度对模块化表达进行组合调整,以确定最佳平衡的途径。此外,组装了一条从D-葡萄糖到L-酪氨酸的新模块化途径,并用鉴定出的最佳模块进行重新优化,以实现(2S)-柚皮素的从头合成。一旦实现这种代谢平衡,最佳菌株能够直接从D-葡萄糖生产100.64 mg/L的(2S)-柚皮素,这是大肠杆菌中从D-葡萄糖获得的最高生产滴度。本文所述的发酵系统为开发经济的微生物生产类黄酮工艺铺平了道路。