Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia.
Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, 06120 Halle, Germany.
Biomolecules. 2023 Mar 20;13(3):565. doi: 10.3390/biom13030565.
The molecule (2)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2)-naringenin production studies in have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2)-naringenin in , selecting the genes phenylalanine ammonia lipase (), 4-coumarate: CoA ligase (), chalcone synthase (), and chalcone isomerase () for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.
分子(2)-柚皮素是一种具有多种营养特性的支架分子。目前,(2)-柚皮素是通过化学合成和植物分离获得的。然而,这些方法有几个缺点。因此,异源生物合成已成为其生产的可行替代方法。最近,[国家]的(2)-柚皮素生产研究使用了不同的工具将其产量提高到 588mg/L。在本研究中,我们设计并组装了(2)-柚皮素生产的生物工厂。首先,我们使用了几个参数化算法来确定在[生物体]中生产(2)-柚皮素的最短途径,选择苯丙氨酸氨肽酶()、4-香豆酸:CoA 连接酶()、查尔酮合酶()和查尔酮异构酶()作为生物合成途径的基因。然后,我们评估了氧传递对 50mL 瓶(flask)和 4L 培养(bench)规模下(2)-柚皮素生产的影响。在瓶规模下,搅拌速度在 50rpm 和 250rpm 之间变化。在台规模下,将溶解氧保持在 5% DO(溶解氧)和 40% DO,获得最高的(2)-柚皮素产量(3.11±0.14g/L)。使用基因组规模建模,获得了对氧敏感基因的基因表达分析(RT-qPCR)。