1] Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany. [2].
Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
Nat Protoc. 2014 Aug;9(8):1803-24. doi: 10.1038/nprot.2014.115. Epub 2014 Jul 3.
Flux analysis has been carried out in plants for decades, but technical innovations are now enabling it to be carried out in photosynthetic tissues in a more precise fashion with respect to the number of metabolites measured. Here we describe a protocol, using gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS), to resolve intracellular fluxes of the central carbon metabolism in illuminated intact Arabidopsis thaliana rosettes using the time course of the unlabeled fractions in 40 major constituents of the metabolome after switching to (13)CO2. We additionally simplify modeling assumptions, specifically to cope with the presence of multiple cellular compartments. We summarize all steps in this 8-10-week-long process, including setting up the chamber; harvesting; liquid extraction and subsequent handling of sample plant material to chemical derivatization procedures such as silylation and methoxymation (necessary for gas chromatography only); choosing instrumentation settings and evaluating the resultant chromatogram in terms of both unlabeled and labeled peaks. Furthermore, we describe how quantitative insights can be gained by estimating both benchmark and previously unknown fluxes from collected data sets.
通量分析在植物中已经进行了几十年,但现在的技术创新使得它能够更精确地在光合组织中进行,同时可以测量更多的代谢物数量。在这里,我们描述了一种使用气相色谱(GC)和液相色谱(LC)-质谱(MS)的方法,通过在(13)CO2 后切换到未标记的分数的时间过程,来解析光照完整拟南芥莲座叶中的中心碳代谢的细胞内通量在代谢组的 40 种主要成分中。我们还简化了模型假设,特别是为了应对多个细胞区室的存在。我们总结了这个 8-10 周长的过程中的所有步骤,包括设置腔室;收获;液体提取和随后对样品植物材料进行处理,进行化学衍生化程序,如硅烷化和甲氧基化(仅气相色谱需要);选择仪器设置,并根据未标记和标记峰评估得到的色谱图。此外,我们还描述了如何通过从收集的数据集中估计基准和以前未知的通量来获得定量见解。