Suppr超能文献

一种用于识别设计准则以提高靶向纳米颗粒对肿瘤的渗透能力的计算框架。

A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors.

作者信息

Hauert Sabine, Berman Spring, Nagpal Radhika, Bhatia Sangeeta N

机构信息

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287, USA.

出版信息

Nano Today. 2013 Dec 1;8(6):566-576. doi: 10.1016/j.nantod.2013.11.001.

Abstract

Targeted nanoparticles are increasingly being engineered for the treatment of cancer. By design, they can passively accumulate in tumors, selectively bind to targets in their environment, and deliver localized treatments. However, the penetration of targeted nanoparticles deep into tissue can be hindered by their slow diffusion and a high binding affinity. As a result, they often localize to areas around the vessels from which they extravasate, never reaching the deep-seeded tumor cells, thereby limiting their efficacy. To increase tissue penetration and cellular accumulation, we propose generalizable guidelines for nanoparticle design and validate them using two different computer models that capture the potency, motion, binding kinetics, and cellular internalization of targeted nanoparticles in a section of tumor tissue. One strategy that emerged from the models was delaying nanoparticle binding until after the nanoparticles have had time to diffuse deep into the tissue. Results show that nanoparticles that are designed according to these guidelines do not require fine-tuning of their kinetics or size and can be administered in lower doses than classical targeted nanoparticles for a desired tissue penetration in a large variety of tumor scenarios. In the future, similar models could serve as a testbed to explore engineered tissue-distributions that arise when large numbers of nanoparticles interact in a tumor environment.

摘要

靶向纳米颗粒正越来越多地被设计用于癌症治疗。通过设计,它们可以被动地在肿瘤中积累,选择性地结合其周围环境中的靶点,并进行局部治疗。然而,靶向纳米颗粒向组织深部的渗透可能会因其缓慢扩散和高结合亲和力而受到阻碍。因此,它们常常定位在其渗出的血管周围区域,从未到达深部的肿瘤细胞,从而限制了它们的疗效。为了增加组织渗透和细胞积累,我们提出了纳米颗粒设计的通用指导原则,并使用两种不同的计算机模型对其进行验证,这两种模型能够捕捉肿瘤组织切片中靶向纳米颗粒的效力、运动、结合动力学和细胞内化过程。从模型中得出的一个策略是将纳米颗粒的结合延迟到纳米颗粒有时间深入扩散到组织之后。结果表明,根据这些指导原则设计的纳米颗粒不需要对其动力学或尺寸进行微调,并且在各种肿瘤情况下,为了达到所需的组织渗透,其给药剂量可以低于传统靶向纳米颗粒。未来,类似的模型可以作为一个试验平台,来探索当大量纳米颗粒在肿瘤环境中相互作用时出现的工程化组织分布。

相似文献

2
Multistage nanoparticle delivery system for deep penetration into tumor tissue.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2426-31. doi: 10.1073/pnas.1018382108. Epub 2011 Jan 18.
4
Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration.
J Control Release. 2016 Dec 28;244(Pt B):257-268. doi: 10.1016/j.jconrel.2016.09.004. Epub 2016 Sep 9.
5
Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.
Biomaterials. 2015 Feb;42:42-51. doi: 10.1016/j.biomaterials.2014.11.054. Epub 2014 Dec 13.
6
Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers.
ACS Appl Mater Interfaces. 2022 Nov 16;14(45):50569-50582. doi: 10.1021/acsami.2c15095. Epub 2022 Nov 1.
7
Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.
Adv Mater. 2018 May 18:e1707557. doi: 10.1002/adma.201707557.
8
Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency.
ACS Nano. 2014 Jun 24;8(6):5696-706. doi: 10.1021/nn500299p. Epub 2014 May 22.
9
Tumor-Associated Fibroblast-Targeted Regulation and Deep Tumor Delivery of Chemotherapeutic Drugs with a Multifunctional Size-Switchable Nanoparticle.
ACS Appl Mater Interfaces. 2019 Oct 30;11(43):39545-39559. doi: 10.1021/acsami.9b13957. Epub 2019 Oct 16.
10
In vivo assembly of nanoparticle components to improve targeted cancer imaging.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11194-9. doi: 10.1073/pnas.1001367107. Epub 2010 Jun 7.

引用本文的文献

2
Understanding nano-engineered particle-cell interactions: biological insights from mathematical models.
Nanoscale Adv. 2021 Mar 9;3(8):2139-2156. doi: 10.1039/d0na00774a. eCollection 2021 Apr 20.
3
Measuring Nanoparticle Penetration Through Bio-Mimetic Gels.
Int J Nanomedicine. 2021 Mar 30;16:2585-2595. doi: 10.2147/IJN.S292131. eCollection 2021.
4
Toward Engineering Biosystems With Emergent Collective Functions.
Front Bioeng Biotechnol. 2020 Jun 26;8:705. doi: 10.3389/fbioe.2020.00705. eCollection 2020.
5
6
Improving nanotherapy delivery and action through image-guided systems pharmacology.
Theranostics. 2020 Jan 1;10(3):968-997. doi: 10.7150/thno.37215. eCollection 2020.
7
Advances in targeted nanotherapeutics: From bioconjugation to biomimicry.
Nano Res. 2018 Oct;11(10):4999-5016. doi: 10.1007/s12274-018-2083-z. Epub 2018 May 17.
8
Synthetic and living micropropellers for convection-enhanced nanoparticle transport.
Sci Adv. 2019 Apr 26;5(4):eaav4803. doi: 10.1126/sciadv.aav4803. eCollection 2019 Apr.
9
Mathematical modeling in cancer nanomedicine: a review.
Biomed Microdevices. 2019 Apr 4;21(2):40. doi: 10.1007/s10544-019-0380-2.
10
Drug delivery in a tumour cord model: a computational simulation.
R Soc Open Sci. 2017 May 24;4(5):170014. doi: 10.1098/rsos.170014. eCollection 2017 May.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
2
Triggered Nanoparticles as Therapeutics.
Nano Today. 2013 Aug 1;8(4):439-447. doi: 10.1016/j.nantod.2013.07.004.
4
Multifunctional nanoparticles for drug delivery and molecular imaging.
Annu Rev Biomed Eng. 2013;15:253-82. doi: 10.1146/annurev-bioeng-071812-152409. Epub 2013 Apr 29.
5
Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.
Science. 2013 Feb 22;339(6122):971-5. doi: 10.1126/science.1229568.
6
Odyssey of a cancer nanoparticle: from injection site to site of action.
Nano Today. 2012 Dec 1;7(6):606-618. doi: 10.1016/j.nantod.2012.10.010.
7
Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities.
Science. 2012 Nov 16;338(6109):903-10. doi: 10.1126/science.1226338.
9
Liposomal drug delivery systems: from concept to clinical applications.
Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. doi: 10.1016/j.addr.2012.09.037. Epub 2012 Oct 1.
10
Identification and characterization of receptor-specific peptides for siRNA delivery.
ACS Nano. 2012 Oct 23;6(10):8620-31. doi: 10.1021/nn301975s. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验