Suppr超能文献

MPGraph:用于预测药物-靶标相互作用的多视图惩罚图聚类。

MPGraph: multi-view penalised graph clustering for predicting drug-target interactions.

机构信息

Department of Information Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.

出版信息

IET Syst Biol. 2014 Apr;8(2):67-73. doi: 10.1049/iet-syb.2013.0040.

Abstract

Identifying drug-target interactions has been a key step for drug repositioning, drug discovery and drug design. Since it is expensive to determine the interactions experimentally, computational methods are needed for predicting interactions. In this work, the authors first propose a single-view penalised graph (SPGraph) clustering approach to integrate drug structure and protein sequence data in a structural view. The SPGraph model does clustering on drugs and targets simultaneously such that the known drug-target interactions are best preserved in the clustering results. They then apply the SPGraph to a chemical view with drug response data and gene expression data in NCI-60 cell lines. They further generalise the SPGraph to a multi-view penalised graph (MPGraph) version, which can integrate the structural view and chemical view of the data. In the authors' experiments, they compare their approach with some comparison partners, and the results show that the SPGraph could improve the prediction accuracy in a small scale, and the MPGraph can achieve around 10% improvements for the prediction accuracy. They finally give some new targets for 22 Food and Drug Administration approved drugs for drug repositioning, and some can be supported by other references.

摘要

鉴定药物-靶标相互作用一直是药物重定位、药物发现和药物设计的关键步骤。由于实验确定相互作用的成本高昂,因此需要计算方法来预测相互作用。在这项工作中,作者首先提出了一种单视图惩罚图(SPGraph)聚类方法,用于在结构视图中整合药物结构和蛋白质序列数据。SPGraph 模型对药物和靶点同时进行聚类,使得已知的药物-靶标相互作用在聚类结果中得到最好的保留。然后,他们将 SPGraph 应用于包含 NCI-60 细胞系中药物反应数据和基因表达数据的化学视图。他们进一步将 SPGraph 推广到多视图惩罚图(MPGraph)版本,该版本可以整合数据的结构视图和化学视图。在作者的实验中,他们将他们的方法与一些比较伙伴进行了比较,结果表明 SPGraph 可以提高小规模的预测准确性,而 MPGraph 可以将预测准确性提高约 10%。最后,他们为 22 种食品和药物管理局批准的药物提供了药物重定位的新靶标,其中一些可以得到其他参考文献的支持。

相似文献

3
Drug Target Prediction by Multi-View Low Rank Embedding.基于多视图低秩嵌入的药物靶点预测。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1712-1721. doi: 10.1109/TCBB.2017.2706267. Epub 2017 May 18.
5
Multi-view spectral clustering and its chemical application.多视图光谱聚类及其化学应用。
Int J Comput Biol Drug Des. 2013;6(1-2):32-49. doi: 10.1504/IJCBDD.2013.052200. Epub 2013 Feb 21.
7
Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization.基于图正则化矩阵分解的药物-靶点相互作用预测
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):646-656. doi: 10.1109/TCBB.2016.2530062. Epub 2016 Feb 15.
9
Identifying Drug-Target Interactions with Decision Templates.使用决策模板识别药物-靶点相互作用
Curr Protein Pept Sci. 2018;19(5):498-506. doi: 10.2174/1389203718666161108101118.

本文引用的文献

5
DrugBank 3.0: a comprehensive resource for 'omics' research on drugs.药物银行3.0:药物“组学”研究的综合资源。
Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41. doi: 10.1093/nar/gkq1126. Epub 2010 Nov 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验