Suppr超能文献

基于 mRNA 和 miRNA 表达数据构建和探究乳腺癌特异性 ceRNA 网络。

Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data.

机构信息

School of Computer, Wuhan University, Wuhan, People's Republic of China.

出版信息

IET Syst Biol. 2014 Jun;8(3):96-103. doi: 10.1049/iet-syb.2013.0025.

Abstract

It has been proved and widely acknowledged that messenger RNAs can talk to each other by competing for a limited pool of miRNAs. The competing endogenous RNAs are called as ceRNAs. Although some researchers have recently used ceRNAs to do biological function annotations, few of them have investigated the ceRNA network on specific disease systematically. In this work, using both miRNA expression data and mRNA expression data of breast cancer patient as well as the miRNA target relations, the authors proposed a computational method to construct a breast-cancer-specific ceRNA network by checking whether the shared miRNA sponges between the gene pairs are significant. The ceRNA network is shown to be scale-free, thus the topological characters such as hub nodes and communities may provide important clues for the biological mechanism. Through investigation on the communities (the dense clusters) in the network, it was found that they are related to cancer hallmarks. In addition, through function annotation of the hub genes in the network, it was found that they are related to breast cancer. Moreover, classifiers based on the discriminative hubs can significantly distinguish breast cancer patients' risks of distant metastasis in all the three independent data sets.

摘要

已经有大量证据证明,信使 RNA 可以通过竞争有限的 miRNA 库进行相互交流。这些竞争性内源 RNA 被称为 ceRNA。尽管最近一些研究人员已经使用 ceRNA 进行生物学功能注释,但很少有人系统地研究特定疾病的 ceRNA 网络。在这项工作中,作者使用 miRNA 表达数据和乳腺癌患者的 mRNA 表达数据以及 miRNA 靶关系,提出了一种通过检查基因对之间是否存在共享 miRNA 海绵来构建乳腺癌特异性 ceRNA 网络的计算方法。结果表明,ceRNA 网络是无标度的,因此拓扑特征(如枢纽节点和社区)可能为生物机制提供重要线索。通过对网络中的社区(密集聚类)进行调查,发现它们与癌症特征有关。此外,通过对网络中枢纽基因的功能注释,发现它们与乳腺癌有关。此外,基于判别性枢纽基因的分类器可以显著区分三个独立数据集的乳腺癌患者发生远处转移的风险。

相似文献

3
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue.
BMC Cancer. 2019 Aug 7;19(1):779. doi: 10.1186/s12885-019-5983-8.
4
Parameter optimization for constructing competing endogenous RNA regulatory network in glioblastoma multiforme and other cancers.
BMC Genomics. 2015;16 Suppl 4(Suppl 4):S1. doi: 10.1186/1471-2164-16-S4-S1. Epub 2015 Apr 21.
5
Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer.
PLoS One. 2017 Feb 10;12(2):e0171661. doi: 10.1371/journal.pone.0171661. eCollection 2017.
6
MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice.
Breast Cancer Res. 2016 Jul 22;18(1):75. doi: 10.1186/s13058-016-0735-z.
8
Systematical analysis of lncRNA-mRNA competing endogenous RNA network in breast cancer subtypes.
Breast Cancer Res Treat. 2018 Jun;169(2):267-275. doi: 10.1007/s10549-018-4678-1. Epub 2018 Feb 1.

引用本文的文献

1
A Deep Differential Analysis in Four Subtypes of Breast Cancer Based on Regulations of miRNA-mRNA.
IET Syst Biol. 2025 Jan-Dec;19(1):e70020. doi: 10.1049/syb2.70020.
3
Modeling ncRNA Synergistic Regulation in Cancer.
Methods Mol Biol. 2025;2883:377-402. doi: 10.1007/978-1-0716-4290-0_17.
4
IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification.
PLoS Comput Biol. 2024 Aug 26;20(8):e1012389. doi: 10.1371/journal.pcbi.1012389. eCollection 2024 Aug.
6
Bioinformatics Methods for Modeling microRNA Regulatory Networks in Cancer.
Adv Exp Med Biol. 2022;1385:161-186. doi: 10.1007/978-3-031-08356-3_6.
7
Editorial: Computational Identification of ceRNA Regulation.
Front Mol Biosci. 2022 Aug 4;9:937505. doi: 10.3389/fmolb.2022.937505. eCollection 2022.
8
LncRNA Expression and Methylation in Breast Cancer and Its Biological and Clinical Implications.
Cancers (Basel). 2022 Jun 4;14(11):2788. doi: 10.3390/cancers14112788.

本文引用的文献

1
Linc2GO: a human LincRNA function annotation resource based on ceRNA hypothesis.
Bioinformatics. 2013 Sep 1;29(17):2221-2. doi: 10.1093/bioinformatics/btt361. Epub 2013 Jun 22.
2
Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7154-9. doi: 10.1073/pnas.1222509110. Epub 2013 Mar 27.
4
The Disease and Gene Annotations (DGA): an annotation resource for human disease.
Nucleic Acids Res. 2013 Jan;41(Database issue):D553-60. doi: 10.1093/nar/gks1244. Epub 2012 Nov 28.
7
Joint analysis of miRNA and mRNA expression data.
Brief Bioinform. 2013 May;14(3):263-78. doi: 10.1093/bib/bbs028. Epub 2012 Jun 12.
8
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.
Cancer Cell. 2012 Mar 20;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014.
9
Most random gene expression signatures are significantly associated with breast cancer outcome.
PLoS Comput Biol. 2011 Oct;7(10):e1002240. doi: 10.1371/journal.pcbi.1002240. Epub 2011 Oct 20.
10
Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.
Cell. 2011 Oct 14;147(2):344-57. doi: 10.1016/j.cell.2011.09.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验