Suppr超能文献

使用二分算法在异质群体中进行分组检测。

Group testing in heterogeneous populations by using halving algorithms.

作者信息

Black Michael S, Bilder Christopher R, Tebbs Joshua M

机构信息

University of Nebraska-Lincoln, USA.

University of South Carolina, Columbia, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2012 Mar 1;61(2):277-290. doi: 10.1111/j.1467-9876.2011.01008.x.

Abstract

Group (pooled) testing is often used to reduce the total number of tests that are needed to screen a large number of individuals for an infectious disease or some other binary characteristic. Traditionally, research in group testing has assumed that each individual is independent with the same risk of positivity. More recently, there has been a growing set of literature generalizing previous work in group testing to include heterogeneous populations so that each individual has a different risk of positivity. We investigate the effect of acknowledging population heterogeneity on a commonly used group testing procedure which is known as 'halving'. For this procedure, positive groups are successively split into two equal-sized halves until all groups test negatively or until individual testing occurs. We show that heterogeneity does not affect the mean number of tests when individuals are randomly assigned to subgroups. However, when individuals are assigned to subgroups on the basis of their risk probabilities, we show that our proposed procedures reduce the number of tests by taking advantage of the heterogeneity. This is illustrated by using chlamydia and gonorrhoea screening data from the state of Nebraska.

摘要

分组(合并)检测通常用于减少对大量个体进行传染病或其他二元特征筛查所需的检测总数。传统上,分组检测的研究假设每个个体是独立的,具有相同的阳性风险。最近,越来越多的文献将先前分组检测的工作推广到包括异质人群,这样每个个体具有不同的阳性风险。我们研究了承认人群异质性对一种常用的分组检测程序(称为“减半”)的影响。对于此程序,阳性组被连续分成两个大小相等的子组,直到所有组检测为阴性或直到进行个体检测。我们表明,当个体被随机分配到子组时,异质性不会影响检测的平均数量。然而,当个体根据其风险概率被分配到子组时,我们表明我们提出的程序通过利用异质性减少了检测数量。这通过使用内布拉斯加州的衣原体和淋病筛查数据来说明。

相似文献

1
Group testing in heterogeneous populations by using halving algorithms.
J R Stat Soc Ser C Appl Stat. 2012 Mar 1;61(2):277-290. doi: 10.1111/j.1467-9876.2011.01008.x.
2
Pooled-testing procedures for screening high volume clinical specimens in heterogeneous populations.
Stat Med. 2012 Nov 30;31(27):3261-8. doi: 10.1002/sim.5334. Epub 2012 Mar 13.
3
Informative Retesting.
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
4
5
Optimal retesting configurations for hierarchical group testing.
J R Stat Soc Ser C Appl Stat. 2015 Aug 1;64(4):693-710. doi: 10.1111/rssc.12097.
6
Informative Dorfman screening.
Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.
7
Two-dimensional informative array testing.
Biometrics. 2012 Sep;68(3):793-804. doi: 10.1111/j.1541-0420.2011.01726.x. Epub 2011 Dec 29.
8
Group testing case identification with biomarker information.
Comput Stat Data Anal. 2018 Jun;122:156-166. doi: 10.1016/j.csda.2018.01.005. Epub 2018 Feb 1.
9
Informative group testing for multiplex assays.
Biometrics. 2019 Mar;75(1):278-288. doi: 10.1111/biom.12988. Epub 2019 Mar 28.
10
Group testing regression model estimation when case identification is a goal.
Biom J. 2013 Mar;55(2):173-89. doi: 10.1002/bimj.201200168. Epub 2013 Feb 8.

引用本文的文献

1
binGroup2: Statistical Tools for Infection Identification via Group Testing.
R J. 2023 Dec;15(4):21-36. doi: 10.32614/rj-2023-081. Epub 2024 Apr 10.
2
Heterogeneity Aware Two-Stage Group Testing.
IEEE Trans Signal Process. 2021 Jul 2;69:3977-3990. doi: 10.1109/TSP.2021.3093785. eCollection 2021.
3
Optimal group testing with heterogeneous risks.
Econ Theory. 2023 Jun 6:1-32. doi: 10.1007/s00199-023-01502-3.
4
Nested Group Testing Procedure.
Commun Math Stat. 2022 Oct 1:1-31. doi: 10.1007/s40304-021-00269-0.
5
Bayesian group testing with dilution effects.
Biostatistics. 2023 Oct 18;24(4):885-900. doi: 10.1093/biostatistics/kxac004.
6
Pooled testing of traced contacts under superspreading dynamics.
PLoS Comput Biol. 2022 Mar 28;18(3):e1010008. doi: 10.1371/journal.pcbi.1010008. eCollection 2022 Mar.
7
Considerations for Pooled Testing of Employees for SARS-CoV-2.
J Occup Environ Med. 2021 Jan 1;63(1):1-9. doi: 10.1097/JOM.0000000000002049.
8
The objective function controversy for group testing: Much ado about nothing?
Stat Med. 2019 Oct 30;38(24):4912-4923. doi: 10.1002/sim.8341. Epub 2019 Aug 30.
9
Informative group testing for multiplex assays.
Biometrics. 2019 Mar;75(1):278-288. doi: 10.1111/biom.12988. Epub 2019 Mar 28.
10
Group testing case identification with biomarker information.
Comput Stat Data Anal. 2018 Jun;122:156-166. doi: 10.1016/j.csda.2018.01.005. Epub 2018 Feb 1.

本文引用的文献

1
Informative Retesting.
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
2
Three-dimensional array-based group testing algorithms.
Biometrics. 2009 Sep;65(3):903-10. doi: 10.1111/j.1541-0420.2008.01158.x. Epub 2008 Nov 13.
3
Introduction of Chlamydia trachomatis screening for young women in Germany.
J Dtsch Dermatol Ges. 2008 Dec;6(12):1032-7. doi: 10.1111/j.1610-0387.2008.06743.x. Epub 2008 May 7.
4
Comparison of group testing algorithms for case identification in the presence of test error.
Biometrics. 2007 Dec;63(4):1152-63. doi: 10.1111/j.1541-0420.2007.00817.x. Epub 2007 May 14.
6
Detection of acute infections during HIV testing in North Carolina.
N Engl J Med. 2005 May 5;352(18):1873-83. doi: 10.1056/NEJMoa042291.
9
Regression analysis of group testing samples.
Stat Med. 2001 Jul 15;20(13):1957-69. doi: 10.1002/sim.817.
10
Regression models for disease prevalence with diagnostic tests on pools of serum samples.
Biometrics. 2000 Dec;56(4):1126-33. doi: 10.1111/j.0006-341x.2000.01126.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验