Suppr超能文献

以病例识别为目标时的分组检测回归模型估计。

Group testing regression model estimation when case identification is a goal.

作者信息

Zhang Boan, Bilder Christopher R, Tebbs Joshua M

机构信息

Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.

出版信息

Biom J. 2013 Mar;55(2):173-89. doi: 10.1002/bimj.201200168. Epub 2013 Feb 8.

Abstract

Group testing is frequently used to reduce the costs of screening a large number of individuals for infectious diseases or other binary characteristics in small prevalence situations. In many applications, the goals include both identifying individuals as positive or negative and estimating the probability of positivity. The identification aspect leads to additional tests being performed, known as "retests", beyond those performed for initial groups of individuals. In this paper, we investigate how regression models can be fit to estimate the probability of positivity while also incorporating the extra information from these retests. We present simulation evidence showing that significant gains in efficiency occur by incorporating retesting information, and we further examine which testing protocols are the most efficient to use. Our investigations also demonstrate that some group testing protocols can actually lead to more efficient estimates than individual testing when diagnostic tests are imperfect. The proposed methods are applied retrospectively to chlamydia screening data from the Infertility Prevention Project. We demonstrate that significant cost savings could occur through the use of particular group testing protocols.

摘要

分组检测常用于在低流行情况下降低对大量个体进行传染病或其他二元特征筛查的成本。在许多应用中,目标既包括将个体识别为阳性或阴性,也包括估计阳性概率。识别方面导致除了对初始个体组进行的检测之外,还需要进行额外的检测,即“复检”。在本文中,我们研究如何拟合回归模型来估计阳性概率,同时纳入这些复检的额外信息。我们给出的模拟证据表明,纳入复检信息可显著提高效率,并且我们进一步研究了哪种检测方案使用起来最有效。我们的研究还表明,当诊断测试不完善时,一些分组检测方案实际上可能比个体检测产生更有效的估计。所提出的方法被追溯应用于不育预防项目的衣原体筛查数据。我们证明,通过使用特定的分组检测方案可以显著节省成本。

相似文献

2
Informative Dorfman screening.信息丰富的 Dorfman 筛查
Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.
3
Informative Retesting.信息性重新测试
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
5
Two-dimensional informative array testing.二维信息阵列测试
Biometrics. 2012 Sep;68(3):793-804. doi: 10.1111/j.1541-0420.2011.01726.x. Epub 2011 Dec 29.
6
Developments in the screening for Chlamydia trachomatis: a review.沙眼衣原体筛查的进展:综述
Obstet Gynecol Clin North Am. 2003 Dec;30(4):637-58. doi: 10.1016/s0889-8545(03)00076-7.

引用本文的文献

2
Bayesian group testing regression models for spatial data.贝叶斯群组检测回归模型在空间数据中的应用。
Spat Spatiotemporal Epidemiol. 2024 Aug;50:100677. doi: 10.1016/j.sste.2024.100677. Epub 2024 Jul 23.
7
Generalized additive regression for group testing data.广义加性回归在组检测数据中的应用。
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.
10
Adaptive elastic net for group testing.用于分组测试的自适应弹性网络
Biometrics. 2019 Mar;75(1):13-23. doi: 10.1111/biom.12973. Epub 2019 Mar 8.

本文引用的文献

1
Group testing in heterogeneous populations by using halving algorithms.使用二分算法在异质群体中进行分组检测。
J R Stat Soc Ser C Appl Stat. 2012 Mar 1;61(2):277-290. doi: 10.1111/j.1467-9876.2011.01008.x.
2
Optimality of group testing in the presence of misclassification.存在错误分类时分组测试的最优性。
Biometrika. 2012 Mar;99(1):245-251. doi: 10.1093/biomet/asr064. Epub 2011 Dec 29.
5
Informative Retesting.信息性重新测试
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
6
Pooling in high-throughput drug screening.高通量药物筛选中的汇集
Curr Opin Drug Discov Devel. 2009 May;12(3):339-50.
7
Three-dimensional array-based group testing algorithms.基于三维阵列的分组测试算法。
Biometrics. 2009 Sep;65(3):903-10. doi: 10.1111/j.1541-0420.2008.01158.x. Epub 2008 Nov 13.
8
Introduction of Chlamydia trachomatis screening for young women in Germany.德国针对年轻女性的沙眼衣原体筛查介绍。
J Dtsch Dermatol Ges. 2008 Dec;6(12):1032-7. doi: 10.1111/j.1610-0387.2008.06743.x. Epub 2008 May 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验