Benmarhnia Tarik, Sottile Marie-France, Plante Céline, Brand Allan, Casati Barbara, Fournier Michel, Smargiassi Audrey
Département de santé environnementale et santé au travail (DSEST), Université de Montréal, Montréal, Québec, Canada.
Environ Health Perspect. 2014 Dec;122(12):1293-8. doi: 10.1289/ehp.1306954. Epub 2014 Jul 18.
Most studies that have assessed impacts on mortality of future temperature increases have relied on a small number of simulations and have not addressed the variability and sources of uncertainty in their mortality projections.
We assessed the variability of temperature projections and dependent future mortality distributions, using a large panel of temperature simulations based on different climate models and emission scenarios.
We used historical data from 1990 through 2007 for Montreal, Quebec, Canada, and Poisson regression models to estimate relative risks (RR) for daily nonaccidental mortality in association with three different daily temperature metrics (mean, minimum, and maximum temperature) during June through August. To estimate future numbers of deaths attributable to ambient temperatures and the uncertainty of the estimates, we used 32 different simulations of daily temperatures for June-August 2020-2037 derived from three global climate models (GCMs) and a Canadian regional climate model with three sets of RRs (one based on the observed historical data, and two on bootstrap samples that generated the 95% CI of the attributable number (AN) of deaths). We then used analysis of covariance to evaluate the influence of the simulation, the projected year, and the sets of RRs used to derive the attributable numbers of deaths.
We found that < 1% of the variability in the distributions of simulated temperature for June-August of 2020-2037 was explained by differences among the simulations. Estimated ANs for 2020-2037 ranged from 34 to 174 per summer (i.e., June-August). Most of the variability in mortality projections (38%) was related to the temperature-mortality RR used to estimate the ANs.
The choice of the RR estimate for the association between temperature and mortality may be important to reduce uncertainty in mortality projections.
大多数评估未来气温升高对死亡率影响的研究依赖于少量模拟,且未解决其死亡率预测中的变异性和不确定性来源。
我们使用基于不同气候模型和排放情景的大量气温模拟数据,评估了气温预测的变异性以及相关的未来死亡率分布。
我们使用了加拿大魁北克省蒙特利尔市1990年至2007年的历史数据,以及泊松回归模型来估计6月至8月期间与三种不同的每日气温指标(平均气温、最低气温和最高气温)相关的每日非意外死亡率的相对风险(RR)。为了估计未来因环境温度导致的死亡人数以及估计值的不确定性,我们使用了来自三个全球气候模型(GCM)和一个加拿大区域气候模型的32种不同的2020 - 2037年6 - 8月每日气温模拟数据,以及三组RR(一组基于观测到的历史数据,两组基于生成死亡归因数(AN)95%置信区间的自助抽样样本)。然后,我们使用协方差分析来评估模拟、预测年份以及用于推导死亡归因数的RR集的影响。
我们发现,2020 - 2037年6 - 8月模拟气温分布中小于1%的变异性可由模拟之间的差异解释。2020 - 2037年的估计AN范围为每个夏季(即6 - 8月)34至174例。死亡率预测中大部分变异性(38%)与用于估计AN的温度 - 死亡率RR有关。
选择温度与死亡率关联的RR估计值对于降低死亡率预测的不确定性可能很重要。