Suppr超能文献

流行病学中的回归断点设计:无需随机试验的因果推断

Regression discontinuity designs in epidemiology: causal inference without randomized trials.

作者信息

Bor Jacob, Moscoe Ellen, Mutevedzi Portia, Newell Marie-Louise, Bärnighausen Till

机构信息

From the aDepartment of Global Health, Boston University School of Public Health, Boston, MA; bAfrica Centre for Health and Population Studies, Somkhele, South Africa; cDepartment of Global Health and Population, Harvard School of Public Health, Boston, MA; and dFaculty of Medicine, University of Southampton, Southampton, United Kingdom.

出版信息

Epidemiology. 2014 Sep;25(5):729-37. doi: 10.1097/EDE.0000000000000138.

Abstract

When patients receive an intervention based on whether they score below or above some threshold value on a continuously measured random variable, the intervention will be randomly assigned for patients close to the threshold. The regression discontinuity design exploits this fact to estimate causal treatment effects. In spite of its recent proliferation in economics, the regression discontinuity design has not been widely adopted in epidemiology. We describe regression discontinuity, its implementation, and the assumptions required for causal inference. We show that regression discontinuity is generalizable to the survival and nonlinear models that are mainstays of epidemiologic analysis. We then present an application of regression discontinuity to the much-debated epidemiologic question of when to start HIV patients on antiretroviral therapy. Using data from a large South African cohort (2007-2011), we estimate the causal effect of early versus deferred treatment eligibility on mortality. Patients whose first CD4 count was just below the 200 cells/μL CD4 count threshold had a 35% lower hazard of death (hazard ratio = 0.65 [95% confidence interval = 0.45-0.94]) than patients presenting with CD4 counts just above the threshold. We close by discussing the strengths and limitations of regression discontinuity designs for epidemiology.

摘要

当患者基于在连续测量的随机变量上得分低于或高于某个阈值而接受干预时,对于接近阈值的患者,干预将被随机分配。回归断点设计利用这一事实来估计因果治疗效果。尽管回归断点设计最近在经济学中迅速普及,但在流行病学中尚未得到广泛采用。我们描述了回归断点、其实施方法以及因果推断所需的假设。我们表明,回归断点可推广到生存模型和非线性模型,而这些模型是流行病学分析的支柱。然后,我们将回归断点应用于何时开始对艾滋病毒患者进行抗逆转录病毒治疗这一备受争议的流行病学问题。利用来自南非一个大型队列(2007 - 2011年)的数据,我们估计了早期与延迟治疗资格对死亡率的因果效应。首次CD4细胞计数刚好低于200个细胞/微升CD4细胞计数阈值的患者,其死亡风险比CD4细胞计数刚好高于阈值的患者低35%(风险比 = 0.65 [95%置信区间 = 0.45 - 0.94])。最后,我们讨论了回归断点设计在流行病学中的优势和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2781/4162343/0e07f07503c5/ede-25-729-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验