Argonne National Laboratory, Biosciences Division, Argonne, IL, USA.
Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
ISME J. 2015 Jan;9(1):166-79. doi: 10.1038/ismej.2014.107. Epub 2014 Jul 29.
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km(2)) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes' predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10(-6)) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ∼3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology.
采样生态系统,即使在局部尺度上,也需要在时间和空间分辨率上进行采样,以捕捉微生物群落的自然变异性,但这是非常昂贵的。我们利用遥感环境参数,从 72 个 16S rRNA 扩增子和 8 个宏基因组观测中推断出海洋表面微生物群落结构和代谢潜力,为英格兰西部海峡的 5904 个网格单元(49km²)创建了一个海洋微生物代谢的系统尺度模型,时间跨度为 3 年的每周平均值。13 个环境变量预测了 24 个细菌目和 1715 个独特的酶编码基因的相对丰度,这些基因编码了 2893 种代谢物的周转。预测的基因相对丰度与测序宏基因组中观察到的相对丰度高度相关(Pearson 相关系数为 0.72,P 值<10(-6))。预测的 CO2 相对周转率(合成或消耗)与观察到的表面 CO2 逸度显著相关。研究了编码氰酶、一氧化碳和苹果酸脱氢酶的基因的预测相对丰度的时空变化,以及预测的 3000 多种代谢物的相对消耗或产生的年际变化,形成了六个显著的时间聚类。这些时空分布可能可以用与局部浮游生物爆发或沉积物再悬浮相关的厌氧和需氧代谢的共存来解释,这促进了厌氧微生境的存在。这个预测模型为未来的采样和实验设计提供了一个通用框架,以便将生物地球化学周转率与微生物生态学联系起来。