Bullerjahn Jakob T, Sturm Sebastian, Kroy Klaus
Universität Leipzig, Institut für theoretische Physik, 04103 Leipzig, Germany.
Nat Commun. 2014 Jul 31;5:4463. doi: 10.1038/ncomms5463.
In dynamic force spectroscopy, single (bio-)molecular bonds are actively broken to assess their range and strength. At low loading rates, the experimentally measured statistical distributions of rupture forces can be analysed using Kramers' theory of spontaneous unbinding. The essentially deterministic unbinding events induced by the extreme forces employed to speed up full-scale molecular simulations have been interpreted in mechanical terms, instead. Here we start from a rigorous probabilistic model of bond dynamics to develop a unified systematic theory that provides exact closed-form expressions for the rupture force distributions and mean unbinding forces, for slow and fast loading protocols. Comparing them with Brownian dynamics simulations, we find them to work well also at intermediate pulling forces. This renders them an ideal companion to Bayesian methods of data analysis, yielding an accurate tool for analysing and comparing force spectroscopy data from a wide range of experiments and simulations.
在动态力谱学中,单个(生物)分子键被主动断裂以评估其范围和强度。在低加载速率下,可使用克莱默斯自发解离理论来分析实验测量的断裂力统计分布。相反,用于加速全尺度分子模拟的极端力所引发的基本确定性解离事件则从力学角度进行了解释。在此,我们从一个严格的键动力学概率模型出发,以发展出一种统一的系统理论,该理论能为慢速和快速加载协议下的断裂力分布及平均解离力提供精确的封闭形式表达式。将这些表达式与布朗动力学模拟结果相比较,我们发现它们在中等拉力下也能很好地适用。这使其成为贝叶斯数据分析方法的理想补充,为分析和比较来自广泛实验及模拟的力谱数据提供了一个精确工具。