Suppr超能文献

视网膜假体、光遗传学和化学光开关。

Retinal prosthetics, optogenetics, and chemical photoswitches.

作者信息

Marc Robert, Pfeiffer Rebecca, Jones Bryan

机构信息

Department of Ophthalmology, University of Utah School of Medicine , Salt Lake City, Utah 84132, United States.

出版信息

ACS Chem Neurosci. 2014 Oct 15;5(10):895-901. doi: 10.1021/cn5001233. Epub 2014 Aug 8.

Abstract

Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream implementations. Even so, given the high density of human foveal ganglion cells, the ultimate chemical photoswitch treatment could deliver cost-effective, high-resolution vision for the blind.

摘要

有三种技术已成为恢复晚期视网膜退行性病变导致的深度失明患者光感的治疗方法

(1)视网膜假体,(2)光遗传学,以及(3)化学光开关。假体是最成熟且唯一应用于临床实践的方法。假体植入需要复杂的外科手术干预,且仅提供有限的视觉分辨率,但有可能恢复许多失明患者的导航能力。光遗传学利用病毒递送来自原核生物或真核藻类的1型视蛋白基因,以恢复存活神经元中的光反应。靶向和表达仍然是主要问题,但有可能解决。重要的是,由于在动物模型中实现了基因表达的长期持续性,光遗传学可以提供高分辨率视觉的极致效果。然而,在体积大、疾病进展复杂且存在病毒穿透物理屏障的人眼中实施光遗传学仍具有挑战性。现在,新一代光致变色配体或化学光开关(偶氮苯 - 季铵衍生物)可以注入退化的小鼠眼睛,并在数分钟到数小时内激活神经元中的光反应。这些光开关为快速且可逆地筛选个体患者预期的视力恢复提供了潜力。能够持续存在于细胞膜中的化学光开关变体可能使其成为一种简单的首选治疗方法,其分辨率和灵敏度与光遗传学方法相当。治疗视网膜退行性病变的一个主要复杂性在于视网膜重塑:病理网络重新布线、分子重编程以及细胞死亡,这些都会损害存活视网膜中的信号传导。重塑迫使在上下游靶向之间做出选择,每种选择都有不同的优缺点。假体和光遗传学可以在任何一种模式下实施,但化学光开关的使用目前仅限于下游实施方式。即便如此,鉴于人类中央凹神经节细胞的高密度,最终的化学光开关治疗可为盲人提供具有成本效益的高分辨率视力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a89/4210130/33194e35c0f4/cn-2014-001233_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验