Ghassemi Mohammad M, Richter Stefan E, Eche Ifeoma M, Chen Tszyi W, Danziger John, Celi Leo A
Laboratory for Computational Physiology, Massachusetts Institute of Technology, E25-505, 77 Massachusetts Ave, Cambridge, 02139, MA, USA,
Intensive Care Med. 2014 Sep;40(9):1332-9. doi: 10.1007/s00134-014-3406-5. Epub 2014 Aug 5.
To demonstrate a novel method that utilizes retrospective data to develop statistically optimal dosing strategies for medications with sensitive therapeutic windows. We illustrate our approach on intravenous unfractionated heparin, a medication which typically considers only patient weight and is frequently misdosed.
We identified available clinical features which impact patient response to heparin and extracted 1,511 patients from the multi-parameter intelligent monitoring in intensive care II database which met our inclusion criteria. These were used to develop two multivariate logistic regressions, modeling sub- and supra-therapeutic activated partial thromboplastin time (aPTT) as a function of clinical features. We combined information from these models to estimate an initial heparin dose that would, on a per-patient basis, maximize the probability of a therapeutic aPTT within 4-8 h of the initial infusion. We tested our model's ability to classifying therapeutic outcomes on a withheld dataset and compared performance to a weight-alone alternative using volume under surface (VUS) (a multiclass version of AUC).
We observed statistically significant associations between sub- and supra-therapeutic aPTT, race, ICU type, gender, heparin dose, age and Sequential Organ Failure Assessment scores with mean validation AUC of 0.78 and 0.79 respectively. Our final model improved outcome classification over the weight-alone alternative, with VUS values of 0.48 vs. 0.42.
This work represents an important step in the secondary use of health data in developing models to optimize drug dosing. The next step would be evaluating whether this approach indeed achieves target aPTT more reliably than the current weight-based heparin dosing in a randomized controlled trial.
展示一种利用回顾性数据为具有敏感治疗窗的药物制定统计学上最优给药策略的新方法。我们以静脉注射普通肝素为例阐述我们的方法,普通肝素通常仅考虑患者体重,且经常出现用药剂量错误的情况。
我们确定了影响患者对肝素反应的可用临床特征,并从重症监护II多参数智能监测数据库中提取了1511名符合我们纳入标准的患者。这些数据被用于建立两个多变量逻辑回归模型,将低于和高于治疗范围的活化部分凝血活酶时间(aPTT)作为临床特征的函数进行建模。我们结合这些模型的信息来估计初始肝素剂量,该剂量在每位患者的基础上,能使初始输注后4 - 8小时内达到治疗性aPTT的概率最大化。我们在一个保留数据集上测试了模型对治疗结果进行分类的能力,并使用曲面下面积(VUS)(AUC的多分类版本)将其性能与仅基于体重的替代方法进行比较。
我们观察到低于和高于治疗范围的aPTT、种族、重症监护病房类型、性别、肝素剂量、年龄和序贯器官衰竭评估评分之间存在统计学上的显著关联,平均验证AUC分别为0.78和0.79。我们的最终模型在结果分类方面优于仅基于体重的替代方法,VUS值分别为0.48和0.42。
这项工作代表了在利用健康数据开发优化药物剂量模型的二次应用方面迈出的重要一步。下一步将是在随机对照试验中评估这种方法是否确实比当前基于体重的肝素给药更可靠地实现目标aPTT。