Suppr超能文献

一种用于预测肝素治疗结局并提供剂量建议的临床预测模型:开发和验证研究。

A Clinical Prediction Model to Predict Heparin Treatment Outcomes and Provide Dosage Recommendations: Development and Validation Study.

机构信息

Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

Digital Health China Technologies Co. Ltd., Beijing, China.

出版信息

J Med Internet Res. 2021 May 20;23(5):e27118. doi: 10.2196/27118.

Abstract

BACKGROUND

Unfractionated heparin is widely used in the intensive care unit as an anticoagulant. However, weight-based heparin dosing has been shown to be suboptimal and may place patients at unnecessary risk during their intensive care unit stay.

OBJECTIVE

In this study, we intended to develop and validate a machine learning-based model to predict heparin treatment outcomes and to provide dosage recommendations to clinicians.

METHODS

A shallow neural network model was adopted in a retrospective cohort of patients from the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC III) database and patients admitted to the Peking Union Medical College Hospital (PUMCH). We modeled the subtherapeutic, normal, and supratherapeutic activated partial thromboplastin time (aPTT) as the outcomes of heparin treatment and used a group of clinical features for modeling. Our model classifies patients into 3 different therapeutic states. We tested the prediction ability of our model and evaluated its performance by using accuracy, the kappa coefficient, precision, recall, and the F1 score. Furthermore, a dosage recommendation module was designed and evaluated for clinical decision support.

RESULTS

A total of 3607 patients selected from MIMIC III and 1549 patients admitted to the PUMCH who met our criteria were included in this study. The shallow neural network model showed results of F1 scores 0.887 (MIMIC III) and 0.925 (PUMCH). When compared with the actual dosage prescribed, our model recommended increasing the dosage for 72.2% (MIMIC III, 1240/1718) and 64.7% (PUMCH, 281/434) of the subtherapeutic patients and decreasing the dosage for 80.9% (MIMIC III, 504/623) and 76.7% (PUMCH, 277/361) of the supratherapeutic patients, suggesting that the recommendations can contribute to clinical improvements and that they may effectively reduce the time to optimal dosage in the clinical setting.

CONCLUSIONS

The evaluation of our model for predicting heparin treatment outcomes demonstrated that the developed model is potentially applicable for reducing the misdosage of heparin and for providing appropriate decision recommendations to clinicians.

摘要

背景

未分级肝素在重症监护病房中被广泛用作抗凝剂。然而,基于体重的肝素给药已被证明并不理想,并且可能使患者在重症监护病房期间面临不必要的风险。

目的

本研究旨在开发和验证一种基于机器学习的模型,以预测肝素治疗结果,并为临床医生提供剂量建议。

方法

我们采用浅层神经网络模型对来自 Multiparameter Intelligent Monitoring in Intensive Care III(MIMIC III)数据库和北京协和医院(PUMCH)住院患者的回顾性队列进行建模。我们将亚治疗、正常和超治疗激活部分凝血活酶时间(aPTT)作为肝素治疗的结果进行建模,并使用一组临床特征进行建模。我们的模型将患者分为 3 种不同的治疗状态。我们通过准确性、kappa 系数、精度、召回率和 F1 分数来测试模型的预测能力,并评估其性能。此外,还设计并评估了一个剂量推荐模块,以支持临床决策。

结果

从 MIMIC III 中选择了 3607 名符合条件的患者和 1549 名 PUMCH 住院患者,纳入本研究。浅层神经网络模型的 F1 分数在 MIMIC III 中为 0.887,在 PUMCH 中为 0.925。与实际开出的剂量相比,我们的模型建议增加剂量治疗 72.2%(MIMIC III,1240/1718)和 64.7%(PUMCH,281/434)的亚治疗患者,减少剂量治疗 80.9%(MIMIC III,504/623)和 76.7%(PUMCH,277/361)的超治疗患者,这表明建议可以有助于临床改善,并且可以有效地减少临床实践中达到最佳剂量的时间。

结论

对我们的模型进行肝素治疗结果预测的评估表明,该模型具有潜在的应用价值,可以减少肝素的错误剂量,并为临床医生提供适当的决策建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbba/8176336/0e6c2716e63d/jmir_v23i5e27118_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验