Experimental and Regenerative Neuroscience, School of Animal Biology, and.
Experimental and Regenerative Neuroscience, School of Animal Biology, and School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, and.
J Neurosci. 2014 Aug 6;34(32):10780-92. doi: 10.1523/JNEUROSCI.0723-14.2014.
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.
重复经颅磁刺激 (rTMS) 越来越多地被用作治疗神经和精神疾病的方法。虽然在 rTMS 期间,诱导场集中在目标区域,但相邻区域也会以较低的强度受到刺激,并且这种周边刺激对网络范围的影响尚未明确。在这里,我们使用正常(C57Bl/6J 野生型,n = 22)和 Ephrin-A2A5(-/-)(n = 22)小鼠的视觉系统检查了低强度 rTMS(LI-rTMS)诱导的模型神经网络的变化,后者具有视拓扑异常。小鼠每天接受 LI-rTMS 或假处理(处理对照)治疗 14 天,然后将氟脱氧尿苷和氟罗丹明注入视皮层。通过比较注射部位的实际位置和预测位置,绘制了背侧外侧膝状体(dLGN)神经元和皮质顶盖终端区(TZs)的分布,并定义了紊乱。在传入的视放射皮质投射中,LI-rTMS 降低了 Ephrin-A2A5(-/-) 小鼠 dLGN 中逆行标记神经元的异常高分散性,表明视放射皮质图的细化。在皮质顶盖传出中,LI-rTMS 改善了 Ephrin-A2A5(-/-) 小鼠最异常 TZs 的地形,而不改变地形正常的 TZs。为了研究 LI-rTMS 诱导的结构可塑性的可能分子机制,我们在单次和多次刺激后测量了视觉皮层和上丘中的脑源性神经营养因子(BDNF)。所有组在单次刺激后 BDNF 上调,但仅在 Ephrin-A2A5(-/-) 小鼠的上丘中持续。我们的结果表明,LI-rTMS 上调 BDNF,营造有利于异常皮质回路有益重组的可塑性环境,这一信息对临床 rTMS 具有重要意义。