Rudyanto Rina D, Kerkstra Sjoerd, van Rikxoort Eva M, Fetita Catalin, Brillet Pierre-Yves, Lefevre Christophe, Xue Wenzhe, Zhu Xiangjun, Liang Jianming, Öksüz Ilkay, Ünay Devrim, Kadipaşaoğlu Kamuran, Estépar Raúl San José, Ross James C, Washko George R, Prieto Juan-Carlos, Hoyos Marcela Hernández, Orkisz Maciej, Meine Hans, Hüllebrand Markus, Stöcker Christina, Mir Fernando Lopez, Naranjo Valery, Villanueva Eliseo, Staring Marius, Xiao Changyan, Stoel Berend C, Fabijanska Anna, Smistad Erik, Elster Anne C, Lindseth Frank, Foruzan Amir Hossein, Kiros Ryan, Popuri Karteek, Cobzas Dana, Jimenez-Carretero Daniel, Santos Andres, Ledesma-Carbayo Maria J, Helmberger Michael, Urschler Martin, Pienn Michael, Bosboom Dennis G H, Campo Arantza, Prokop Mathias, de Jong Pim A, Ortiz-de-Solorzano Carlos, Muñoz-Barrutia Arrate, van Ginneken Bram
Center for Applied Medical Research, University of Navarra, Spain.
Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, The Netherlands.
Med Image Anal. 2014 Oct;18(7):1217-32. doi: 10.1016/j.media.2014.07.003. Epub 2014 Jul 23.
The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.
VESSEL12(肺部血管分割)挑战赛客观地比较了不同算法在胸部计算机断层扫描(CT)图像中识别血管的性能。血管分割是3D成像模态生成数据的计算机辅助处理中的基础。由于手动进行血管分割极其耗时,任何实际应用都需要某种形式的自动化。虽然存在多种自动血管分割方法,但由于缺乏标准化评估,很难判断它们的相对优缺点。我们提供了一个包含20例CT扫描的注释参考数据集,并提出了九种类别,以便对来自学术界和工业界的血管分割算法进行全面评估。20种算法参加了2012年在国际生物医学成像研讨会(ISBI)上举办的VESSEL12挑战赛。所有结果都已在VESSEL12网站http://vessel12.grand-challenge.org上公布。该挑战赛仍在进行中,并向新参与者开放。我们的三项贡献是:(1)一个可在线获取的注释参考数据集,用于评估新算法;(2)一个用于算法客观比较的定量评分系统;(3)在存在各种肺部疾病的情况下,对各种血管分割方法的优缺点进行性能分析。