Department of Agricultural Economics, Texas A&M University, TAMU 2124, College Station, TX, 77843-2124, USA,
Environ Manage. 2014 Oct;54(4):828-39. doi: 10.1007/s00267-014-0348-1. Epub 2014 Aug 13.
Uncertainties inherent in fisheries motivate a precautionary approach to management, meaning an approach specifically intended to avoid bad outcomes. Stochastic dynamic optimization models, which have been in the fisheries literature for decades, provide a framework for decision making when uncertain outcomes have known probabilities. However, most such models incorporate population dynamics models for which the parameters are assumed known. In this paper, we apply a robust optimization approach to capture a form of uncertainty nearly universal in fisheries, uncertainty regarding the values of model parameters. Our approach, developed by Nilim and El Ghaoui (Oper Res 53(5):780-798, 2005), establishes bounds on parameter values based on the available data and the degree of precaution that the decision maker chooses. To demonstrate the applicability of the method to fisheries management problems, we use a simple example, the Skeena River sockeye salmon fishery. We show that robust optimization offers a structured and computationally tractable approach to formulating precautionary harvest policies. Moreover, as better information about the resource becomes available, less conservative management is possible without reducing the level of precaution.
渔业中的不确定性促使人们采用预防性管理方法,即专门用于避免不良结果的方法。几十年来,随机动态优化模型一直在渔业文献中,为具有已知概率的不确定结果提供决策制定框架。然而,大多数此类模型都包含种群动态模型,这些模型的参数被假定为已知。在本文中,我们应用稳健优化方法来捕捉渔业中几乎普遍存在的一种不确定性,即模型参数值的不确定性。我们的方法由 Nilim 和 El Ghaoui(Oper Res 53(5):780-798, 2005)开发,根据可用数据和决策者选择的预防程度来确定参数值的范围。为了展示该方法在渔业管理问题中的适用性,我们使用了一个简单的例子,即斯凯纳河红大麻哈鱼渔业。我们表明,稳健优化为制定预防性捕捞政策提供了一种结构化且计算上易于处理的方法。此外,随着有关资源的信息变得更加可用,可以在不降低预防水平的情况下进行更不保守的管理。