Suppr超能文献

生物医学与健康领域大数据的技术挑战:数据来源、基础设施与分析

Technical challenges for big data in biomedicine and health: data sources, infrastructure, and analytics.

作者信息

Peek N, Holmes J H, Sun J

机构信息

Niels Peek, Centre for Health Informatics, The University of Manchester, Vaughan House, Portsmouth Street, Manchester M13 9GB, United Kingdom, E-mail:

出版信息

Yearb Med Inform. 2014 Aug 15;9(1):42-7. doi: 10.15265/IY-2014-0018.

Abstract

OBJECTIVES

To review technical and methodological challenges for big data research in biomedicine and health.

METHODS

We discuss sources of big datasets, survey infrastructures for big data storage and big data processing, and describe the main challenges that arise when analyzing big data.

RESULTS

The life and biomedical sciences are massively contributing to the big data revolution through secondary use of data that were collected during routine care and through new data sources such as social media. Efficient processing of big datasets is typically achieved by distributing computation over a cluster of computers. Data analysts should be aware of pitfalls related to big data such as bias in routine care data and the risk of false-positive findings in high-dimensional datasets.

CONCLUSIONS

The major challenge for the near future is to transform analytical methods that are used in the biomedical and health domain, to fit the distributed storage and processing model that is required to handle big data, while ensuring confidentiality of the data being analyzed.

摘要

目标

回顾生物医学与健康领域大数据研究中的技术和方法挑战。

方法

我们讨论大数据集的来源,调查大数据存储和大数据处理的基础设施,并描述分析大数据时出现的主要挑战。

结果

生命科学和生物医学通过对常规护理期间收集的数据进行二次利用以及通过社交媒体等新数据源,为大数据革命做出了巨大贡献。高效处理大数据集通常是通过在一组计算机上分布计算来实现的。数据分析师应意识到与大数据相关的陷阱,如常规护理数据中的偏差以及高维数据集中假阳性结果的风险。

结论

在不久的将来,主要挑战是改造生物医学与健康领域所使用的分析方法,以适应处理大数据所需的分布式存储和处理模型,同时确保所分析数据的保密性。

相似文献

2
Big Data Analytics in Medicine and Healthcare.医学与医疗保健中的大数据分析
J Integr Bioinform. 2018 May 10;15(3):20170030. doi: 10.1515/jib-2017-0030.
3
Big data in medicine is driving big changes.医学领域的大数据正在推动巨大变革。
Yearb Med Inform. 2014 Aug 15;9(1):14-20. doi: 10.15265/IY-2014-0020.
6
Big Data Analytics for Genomic Medicine.基因组医学中的大数据分析
Int J Mol Sci. 2017 Feb 15;18(2):412. doi: 10.3390/ijms18020412.
10
Concurrence of big data analytics and healthcare: A systematic review.大数据分析与医疗保健的并存:系统评价。
Int J Med Inform. 2018 Jun;114:57-65. doi: 10.1016/j.ijmedinf.2018.03.013. Epub 2018 Mar 26.

引用本文的文献

5
Data Integration Challenges for Machine Learning in Precision Medicine.精准医学中机器学习的数据整合挑战
Front Med (Lausanne). 2022 Jan 25;8:784455. doi: 10.3389/fmed.2021.784455. eCollection 2021.

本文引用的文献

7
Web-scale pharmacovigilance: listening to signals from the crowd.网络规模药物警戒:从人群中聆听信号。
J Am Med Inform Assoc. 2013 May 1;20(3):404-8. doi: 10.1136/amiajnl-2012-001482. Epub 2013 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验