Suppr超能文献

医疗保健领域的大数据使用模式:一种应用于疫苗接种益处和风险评估的用例驱动方法。国际医学信息学会初级卫生保健工作组的贡献。

Big Data Usage Patterns in the Health Care Domain: A Use Case Driven Approach Applied to the Assessment of Vaccination Benefits and Risks. Contribution of the IMIA Primary Healthcare Working Group.

作者信息

Liyanage H, de Lusignan S, Liaw S-T, Kuziemsky C E, Mold F, Krause P, Fleming D, Jones S

机构信息

Simon de Lusignan, Clinical Informatics & Health Outcomes research group, Department of Health Care Policy and Management, University of Surrey, GUILDFORD, Surrey GU2 7XH, UK, E-mail:

出版信息

Yearb Med Inform. 2014 Aug 15;9(1):27-35. doi: 10.15265/IY-2014-0016.

Abstract

BACKGROUND

Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive.

OBJECTIVE

To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines.

METHOD

We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars.

RESULTS

We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowdsourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the "internet of things", and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources.

CONCLUSIONS

Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.

摘要

背景

一般来说,疫苗的益处和风险可以通过作为监管合规一部分进行的研究来确定,随后对常规数据进行监测;然而,存在一些较为罕见且更具长期性的事件,需要新的方法。由日益经济实惠的个性化计算以及普及的计算设备所产生的大数据正在迅速增长,且成本低廉,高容量的云计算使得这些数据的处理成本不高。

目的

描述大数据及相关分析方法如何可用于评估疫苗的益处和风险。

方法

我们回顾了关于利用大数据改善健康状况的文献,这些文献应用于通用疫苗使用案例,以说明疫苗接种的益处和风险。我们将使用案例定义为用户与信息系统之间为实现一个目标而进行的交互。我们以流感疫苗接种和学龄前儿童免疫为例。

结果

我们回顾了三个与评估疫苗益处和风险相关的大数据使用案例:(i)使用众包、分布式大数据处理和预测分析进行大数据处理,(ii)来自异构大数据源的数据整合,例如“物联网”中日益增多的设备类型,以及(iii)通过社交媒体和其他数据源对疫情以及疫苗效果进行直接监测的实时监测。

结论

大数据引发了新的伦理困境,不过其分析方法可为监测疫情和评估疫苗效益 - 风险平衡带来互补的实时能力。

相似文献

2
Big Data Analytics in Medicine and Healthcare.医学与医疗保健中的大数据分析
J Integr Bioinform. 2018 May 10;15(3):20170030. doi: 10.1515/jib-2017-0030.
7
Big³. Editorial.大³。社论。
Yearb Med Inform. 2014 May 22;9(1):6-7. doi: 10.15265/IY-2014-0030.
8
Leveraging hospital big data to monitor flu epidemics.利用医院大数据监测流感疫情。
Comput Methods Programs Biomed. 2018 Feb;154:153-160. doi: 10.1016/j.cmpb.2017.11.012. Epub 2017 Nov 15.
9
Big data in medicine is driving big changes.医学领域的大数据正在推动巨大变革。
Yearb Med Inform. 2014 Aug 15;9(1):14-20. doi: 10.15265/IY-2014-0020.

引用本文的文献

本文引用的文献

1
Why Big Data Won't Cure Us.大数据为何无法治愈我们。
Big Data. 2013 Sep;1(3):117-123. doi: 10.1089/big.2013.0029.
3
Twitter and public health.推特与公共卫生。
J Public Health Manag Pract. 2015 Jul-Aug;21(4):375-83. doi: 10.1097/PHH.0000000000000041.
5
Active surveillance for adverse events following immunization.疫苗接种后不良事件的主动监测。
Expert Rev Vaccines. 2014 Feb;13(2):265-76. doi: 10.1586/14760584.2014.866895. Epub 2013 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验