Suppr超能文献

连续最大流与伍尔夫形状:在马尔可夫随机场中的应用

Continuous Maximal Flows and Wulff Shapes: Application to MRFs.

作者信息

Zach Christopher, Niethammer Marc, Frahm Jan-Michael

机构信息

University of North Carolina, Chapel Hill, NC.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2009 Jun;2009:1911-1918. doi: 10.1109/CVPR.2009.5206565.

Abstract

Convex and continuous energy formulations for low level vision problems enable efficient search procedures for the corresponding globally optimal solutions. In this work we extend the well-established continuous, isotropic capacity-based maximal flow framework to the anisotropic setting. By using powerful results from convex analysis, a very simple and efficient minimization procedure is derived. Further, we show that many important properties carry over to the new anisotropic framework, e.g. globally optimal binary results can be achieved simply by thresholding the continuous solution. In addition, we unify the anisotropic continuous maximal flow approach with a recently proposed convex and continuous formulation for Markov random fields, thereby allowing more general smoothness priors to be incorporated. Dense stereo results are included to illustrate the capabilities of the proposed approach.

摘要

用于低级视觉问题的凸连续能量公式,为相应的全局最优解提供了高效的搜索程序。在这项工作中,我们将成熟的基于连续各向同性容量的最大流框架扩展到各向异性设置。通过利用凸分析的有力结果,推导出了一种非常简单且高效的最小化程序。此外,我们表明许多重要属性可以延续到新的各向异性框架,例如,只需对连续解进行阈值处理就可以得到全局最优的二元结果。此外,我们将各向异性连续最大流方法与最近提出的用于马尔可夫随机场的凸连续公式统一起来,从而能够纳入更一般的平滑先验。文中包含密集立体视觉结果以说明所提方法的能力。

相似文献

1
Continuous Maximal Flows and Wulff Shapes: Application to MRFs.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2009 Jun;2009:1911-1918. doi: 10.1109/CVPR.2009.5206565.
2
What is optimized in convex relaxations for multilabel problems: connecting discrete and continuously inspired MAP inference.
IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):157-70. doi: 10.1109/TPAMI.2013.105.
3
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Trans Pattern Anal Mach Intell. 2008 Jun;30(6):1068-80. doi: 10.1109/TPAMI.2007.70844.
4
Dense photometric stereo: a Markov random field approach.
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1830-46. doi: 10.1109/TPAMI.2006.224.
5
Fusion moves for Markov random field optimization.
IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1392-405. doi: 10.1109/TPAMI.2009.143.
6
Approximate labeling via graph cuts based on linear programming.
IEEE Trans Pattern Anal Mach Intell. 2007 Aug;29(8):1436-53. doi: 10.1109/TPAMI.2007.1061.
7
A Framework for Efficient Structured Max-Margin Learning of High-Order MRF Models.
IEEE Trans Pattern Anal Mach Intell. 2015 Jul;37(7):1425-41. doi: 10.1109/TPAMI.2014.2368990.
8
Globally minimal surfaces by continuous maximal flows.
IEEE Trans Pattern Anal Mach Intell. 2006 Jan;28(1):106-18. doi: 10.1109/TPAMI.2006.12.
9
Empirical Bayesian Light-Field Stereo Matching by Robust Pseudo Random Field Modeling.
IEEE Trans Pattern Anal Mach Intell. 2019 Mar;41(3):552-565. doi: 10.1109/TPAMI.2018.2809502. Epub 2018 Feb 26.
10
Globally Optimal Finsler Active Contours.
Pattern Recognit DAGM. 2009;5748:552-561. doi: 10.1007/978-3-642-03798-6_56.

引用本文的文献

1
CLAIRE: A DISTRIBUTED-MEMORY SOLVER FOR CONSTRAINED LARGE DEFORMATION DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2019;41(5):C548-C584. doi: 10.1137/18m1207818. Epub 2019 Oct 24.
2
A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.
SIAM J Sci Comput. 2017;39(6):B1064-B1101. doi: 10.1137/16M1070475. Epub 2017 Nov 21.
3
Constrained -regularization schemes for diffeomorphic image registration.
SIAM J Imaging Sci. 2016;9(3):1154-1194. doi: 10.1137/15M1010919. Epub 2016 Aug 30.
4
Automatic atlas-based three-label cartilage segmentation from MR knee images.
Med Image Anal. 2014 Oct;18(7):1233-46. doi: 10.1016/j.media.2014.05.008. Epub 2014 Jun 28.
5
Automatic Atlas-based Three-label Cartilage Segmentation from MR Knee Images.
Proc Workshop Math Methods Biomed Image Analysis. 2012:241-246. doi: 10.1109/mmbia.2012.6164757.
6
Segmentation with area constraints.
Med Image Anal. 2013 Jan;17(1):101-12. doi: 10.1016/j.media.2012.09.002. Epub 2012 Sep 28.

本文引用的文献

1
A general framework for low level vision.
IEEE Trans Image Process. 1998;7(3):310-8. doi: 10.1109/83.661181.
2
Convergent tree-reweighted message passing for energy minimization.
IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83. doi: 10.1109/TPAMI.2006.200.
3
Globally minimal surfaces by continuous maximal flows.
IEEE Trans Pattern Anal Mach Intell. 2006 Jan;28(1):106-18. doi: 10.1109/TPAMI.2006.12.
4
What energy functions can be minimized via graph cuts?
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):147-59. doi: 10.1109/TPAMI.2004.1262177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验