Zach Christopher, Niethammer Marc, Frahm Jan-Michael
University of North Carolina, Chapel Hill, NC.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2009 Jun;2009:1911-1918. doi: 10.1109/CVPR.2009.5206565.
Convex and continuous energy formulations for low level vision problems enable efficient search procedures for the corresponding globally optimal solutions. In this work we extend the well-established continuous, isotropic capacity-based maximal flow framework to the anisotropic setting. By using powerful results from convex analysis, a very simple and efficient minimization procedure is derived. Further, we show that many important properties carry over to the new anisotropic framework, e.g. globally optimal binary results can be achieved simply by thresholding the continuous solution. In addition, we unify the anisotropic continuous maximal flow approach with a recently proposed convex and continuous formulation for Markov random fields, thereby allowing more general smoothness priors to be incorporated. Dense stereo results are included to illustrate the capabilities of the proposed approach.
用于低级视觉问题的凸连续能量公式,为相应的全局最优解提供了高效的搜索程序。在这项工作中,我们将成熟的基于连续各向同性容量的最大流框架扩展到各向异性设置。通过利用凸分析的有力结果,推导出了一种非常简单且高效的最小化程序。此外,我们表明许多重要属性可以延续到新的各向异性框架,例如,只需对连续解进行阈值处理就可以得到全局最优的二元结果。此外,我们将各向异性连续最大流方法与最近提出的用于马尔可夫随机场的凸连续公式统一起来,从而能够纳入更一般的平滑先验。文中包含密集立体视觉结果以说明所提方法的能力。