Wenzel Jan, Wormit Michael, Dreuw Andreas
Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
J Comput Chem. 2014 Oct 5;35(26):1900-15. doi: 10.1002/jcc.23703. Epub 2014 Aug 7.
Core-level excitations are generated by absorption of high-energy radiation such as X-rays. To describe these energetically high-lying excited states theoretically, we have implemented a variant of the algebraic-diagrammatic construction scheme of second-order ADC(2) by applying the core-valence separation (CVS) approximation to the ADC(2) working equations. Besides excitation energies, the CVS-ADC(2) method also provides access to properties of core-excited states, thereby allowing for the calculation of X-ray absorption spectra. To demonstrate the potential of our implementation of CVS-ADC(2), we have chosen medium-sized molecules as examples that have either biological importance or find application in organic electronics. The calculated results of CVS-ADC(2) are compared with standard TD-DFT/B3LYP values and experimental data. In particular, the extended variant, CVS-ADC(2)-x, provides the most accurate results, and the agreement between the calculated values and experiment is remarkable.
芯能级激发是由吸收诸如X射线等高能辐射产生的。为了从理论上描述这些高能激发态,我们通过将芯价分离(CVS)近似应用于ADC(2)工作方程,实现了二阶代数图示构造方案(ADC(2))的一个变体。除了激发能之外,CVS-ADC(2)方法还能获取芯激发态的性质,从而可用于计算X射线吸收光谱。为了展示我们实现的CVS-ADC(2)的潜力,我们选择了具有生物学重要性或在有机电子学中有应用的中型分子作为示例。将CVS-ADC(2)的计算结果与标准TD-DFT/B3LYP值及实验数据进行了比较。特别是扩展变体CVS-ADC(2)-x给出了最准确的结果,计算值与实验之间的一致性非常显著。