Kranzusch Philip J, Lee Amy S Y, Wilson Stephen C, Solovykh Mikhail S, Vance Russell E, Berger James M, Doudna Jennifer A
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute (HHMI), University of California, Berkeley, Berkeley, CA 94720, USA.
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Cell. 2014 Aug 28;158(5):1011-1021. doi: 10.1016/j.cell.2014.07.028. Epub 2014 Aug 14.
Cyclic dinucleotides (CDNs) play central roles in bacterial pathogenesis and innate immunity. The mammalian enzyme cGAS synthesizes a unique cyclic dinucleotide (cGAMP) containing a 2'-5' phosphodiester linkage essential for optimal immune stimulation, but the molecular basis for linkage specificity is unknown. Here, we show that the Vibrio cholerae pathogenicity factor DncV is a prokaryotic cGAS-like enzyme whose activity provides a mechanistic rationale for the unique ability of cGAS to produce 2'-5' cGAMP. Three high-resolution crystal structures show that DncV and human cGAS generate CDNs in sequential reactions that proceed in opposing directions. We explain 2' and 3' linkage specificity and test this model by reprogramming the human cGAS active site to produce 3'-5' cGAMP, leading to selective stimulation of alternative STING adaptor alleles in cells. These results demonstrate mechanistic homology between bacterial signaling and mammalian innate immunity and explain how active site configuration controls linkage chemistry for pathway-specific signaling.
环二核苷酸(CDNs)在细菌致病机制和天然免疫中发挥核心作用。哺乳动物酶cGAS合成一种独特的环二核苷酸(cGAMP),其含有对最佳免疫刺激至关重要的2'-5'磷酸二酯键,但连接特异性的分子基础尚不清楚。在此,我们表明霍乱弧菌致病因子DncV是一种原核cGAS样酶,其活性为cGAS产生2'-5' cGAMP的独特能力提供了机制依据。三个高分辨率晶体结构表明,DncV和人类cGAS在相反方向进行的连续反应中生成CDNs。我们解释了2'和3'连接特异性,并通过对人类cGAS活性位点进行重新编程以产生3'-5' cGAMP来测试该模型,从而导致细胞中选择性刺激替代的STING衔接子等位基因。这些结果证明了细菌信号传导与哺乳动物天然免疫之间的机制同源性,并解释了活性位点构型如何控制途径特异性信号传导的连接化学。