Suppr超能文献

结合基于家系和群体的插补数据,用于大型家系中罕见和常见变异的关联分析。

Combining family- and population-based imputation data for association analysis of rare and common variants in large pedigrees.

作者信息

Saad Mohamad, Wijsman Ellen M

机构信息

Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America; Department of Biostatistics, University of Washington, Seattle, Washington, United States of America.

出版信息

Genet Epidemiol. 2014 Nov;38(7):579-90. doi: 10.1002/gepi.21844. Epub 2014 Aug 1.

Abstract

In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT-RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension "famSKAT-RC." We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here.

摘要

在过去二十年中,复杂性状已成为基因研究的主要焦点。关于罕见变异和常见变异均与复杂性状相关的假说正越来越多地被讨论。使用相对较大家系的基于家系的关联研究适用于罕见变异和常见变异的识别。由于测序技术成本高昂,推断方法对于低成本增加信息量很重要。最近一种基于家系的推断方法,即遗传给定基因型推断(GIGI),能够处理大型家系并准确推断罕见变异,但对于常见变异的处理效果较差,而基于群体的方法在处理常见变异方面表现更好。在此,我们提出一种灵活的方法来结合基于家系和基于群体的方法的推断数据。我们还将最初为无关个体数据提出的罕见和常见变异序列核关联检验(SKAT-RC)扩展到家系数据,以便利用此类推断数据。我们将此扩展称为“famSKAT-RC”。我们比较了famSKAT-RC与其他几种现有的负担和核关联检验的性能。在模拟的家系序列数据中,我们的结果表明,使用我们的组合方法可提高推断准确性。此外,在罕见和常见变异的背景下,与单独使用基于家系或基于群体的推断方法相比,使用此方法可提高关联检验的效能。而且,在本文研究的大多数情况下,我们的结果表明famSKAT-RC比其他考虑的检验表现更好。

相似文献

2
Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes.
Genet Epidemiol. 2014 Jan;38(1):1-9. doi: 10.1002/gepi.21776. Epub 2013 Nov 15.
3
GIGI: an approach to effective imputation of dense genotypes on large pedigrees.
Am J Hum Genet. 2013 Apr 4;92(4):504-16. doi: 10.1016/j.ajhg.2013.02.011.
4
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
Genet Epidemiol. 2016 Dec;40(8):702-721. doi: 10.1002/gepi.21984. Epub 2016 Jul 4.
5
Testing genetic association with rare and common variants in family data.
Genet Epidemiol. 2014 Sep;38 Suppl 1(0 1):S37-43. doi: 10.1002/gepi.21823.
6
A statistical framework to guide sequencing choices in pedigrees.
Am J Hum Genet. 2014 Feb 6;94(2):257-67. doi: 10.1016/j.ajhg.2014.01.005.
7
Revisit Population-based and Family-based Genotype Imputation.
Sci Rep. 2019 Feb 12;9(1):1800. doi: 10.1038/s41598-018-38469-4.
9
Sequence kernel association test for quantitative traits in family samples.
Genet Epidemiol. 2013 Feb;37(2):196-204. doi: 10.1002/gepi.21703. Epub 2012 Dec 26.
10
PedBLIMP: extending linear predictors to impute genotypes in pedigrees.
Genet Epidemiol. 2014 Sep;38(6):531-41. doi: 10.1002/gepi.21838. Epub 2014 Jul 12.

引用本文的文献

1
The sequence kernel association test for the proportional odds model.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf304.
4
How local reference panels improve imputation in French populations.
Sci Rep. 2024 Jan 3;14(1):370. doi: 10.1038/s41598-023-49931-3.
5
Excalibur: A new ensemble method based on an optimal combination of aggregation tests for rare-variant association testing for sequencing data.
PLoS Comput Biol. 2023 Sep 14;19(9):e1011488. doi: 10.1371/journal.pcbi.1011488. eCollection 2023 Sep.
6
A joint use of pooling and imputation for genotyping SNPs.
BMC Bioinformatics. 2022 Oct 13;23(1):421. doi: 10.1186/s12859-022-04974-7.
8
Alternative Applications of Genotyping Array Data Using Multivariant Methods.
Trends Genet. 2020 Nov;36(11):857-867. doi: 10.1016/j.tig.2020.07.006. Epub 2020 Aug 6.
9
Kinpute: using identity by descent to improve genotype imputation.
Bioinformatics. 2019 Nov 1;35(21):4321-4326. doi: 10.1093/bioinformatics/btz221.
10
Revisit Population-based and Family-based Genotype Imputation.
Sci Rep. 2019 Feb 12;9(1):1800. doi: 10.1038/s41598-018-38469-4.

本文引用的文献

1
Identity-by-descent graphs offer a flexible framework for imputation and both linkage and association analyses.
BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S19. doi: 10.1186/1753-6561-8-S1-S19. eCollection 2014.
2
Robust rare variant association testing for quantitative traits in samples with related individuals.
Genet Epidemiol. 2014 Jan;38(1):10-20. doi: 10.1002/gepi.21775. Epub 2013 Nov 18.
3
Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes.
Genet Epidemiol. 2014 Jan;38(1):1-9. doi: 10.1002/gepi.21776. Epub 2013 Nov 15.
4
Sequence kernel association tests for the combined effect of rare and common variants.
Am J Hum Genet. 2013 Jun 6;92(6):841-53. doi: 10.1016/j.ajhg.2013.04.015. Epub 2013 May 16.
5
Genome-wide association analysis for multiple continuous secondary phenotypes.
Am J Hum Genet. 2013 May 2;92(5):744-59. doi: 10.1016/j.ajhg.2013.04.004.
6
GIGI: an approach to effective imputation of dense genotypes on large pedigrees.
Am J Hum Genet. 2013 Apr 4;92(4):504-16. doi: 10.1016/j.ajhg.2013.02.011.
7
8
Sequence kernel association test for quantitative traits in family samples.
Genet Epidemiol. 2013 Feb;37(2):196-204. doi: 10.1002/gepi.21703. Epub 2012 Dec 26.
9
SNP set association analysis for familial data.
Genet Epidemiol. 2012 Dec;36(8):797-810. doi: 10.1002/gepi.21676. Epub 2012 Sep 11.
10
A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway.
Adv Appl Bioinform Chem. 2012;5:1-9. doi: 10.2147/AABC.S33049. Epub 2012 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验