Suppr超能文献

利用CRISPR/Cas9在体内有效删除一个大型印记长链非编码RNA

Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9.

作者信息

Han Jinxiong, Zhang Jun, Chen Li, Shen Bin, Zhou Jiankui, Hu Bian, Du Yinan, Tate Peri H, Huang Xingxu, Zhang Wensheng

机构信息

MOE Key Laboratory of Model Animal for Disease Study; Model Animal Research Center of Nanjing University; Nanjing, Jiangsu Province, PR China.

Wellcome Trust Sanger Institute; Wellcome Trust Genome Campus; Hinxton, Cambridge, UK.

出版信息

RNA Biol. 2014;11(7):829-35. doi: 10.4161/rna.29624. Epub 2014 Aug 19.

Abstract

Recent genome-wide studies have revealed that the majority of the mouse genome is transcribed as non-coding RNAs (ncRNAs) and growing evidence supports the importance of ncRNAs in regulating gene expression and epigenetic processes. However, the low efficiency of conventional gene targeting strategies has hindered the functional study of ncRNAs in vivo, particularly in generating large fragment deletions of long non-coding RNAs (lncRNAs) with multiple expression variants. The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has recently been applied as an efficient tool for engineering site-specific mutations of protein-coding genes in the genome. In this study, we explored the potential of using the CRISPR/Cas9 system to generate large genomic deletions of lncRNAs in mice. We developed an efficient one-step strategy to target the maternally expressed lncRNA, Rian, on chromosome 12 in mice. We showed that paired sgRNAs can precisely generate large deletions up to 23kb and the deletion efficiency can be further improved up to 33% by combining multiple sgRNAs. The deletion successfully abolished the expression of Rian from the maternally inherited allele, validating the biological relevance of the mutations in studying an imprinted locus. Mutation of Rian has differential effects on expression of nearby genes in different somatic tissues. Taken together, we have established a robust one-step method to engineer large deletions to knockout lncRNA genes with the CRISPR/Cas9 system. Our work will facilitate future functional studies of other lncRNAs in vivo.

摘要

最近的全基因组研究表明,小鼠基因组的大部分转录为非编码RNA(ncRNAs),越来越多的证据支持ncRNAs在调节基因表达和表观遗传过程中的重要性。然而,传统基因靶向策略的低效率阻碍了ncRNAs在体内的功能研究,特别是在产生具有多个表达变体的长链非编码RNA(lncRNAs)的大片段缺失方面。细菌成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)系统最近已被用作在基因组中对蛋白质编码基因进行位点特异性突变工程的有效工具。在本研究中,我们探索了使用CRISPR/Cas9系统在小鼠中产生lncRNAs大片段基因组缺失的潜力。我们开发了一种有效的一步策略,靶向小鼠12号染色体上母源表达的lncRNA Rian。我们表明,配对的sgRNAs可以精确产生长达23kb的大片段缺失,通过组合多个sgRNAs,缺失效率可进一步提高至33%。该缺失成功消除了母源遗传等位基因上Rian的表达,验证了这些突变在研究印记基因座中的生物学相关性。Rian的突变对不同体细胞组织中附近基因的表达有不同影响。综上所述,我们建立了一种强大的一步法,利用CRISPR/Cas9系统对lncRNA基因进行大片段缺失敲除。我们的工作将促进未来其他lncRNAs在体内的功能研究。

相似文献

1
Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9.
RNA Biol. 2014;11(7):829-35. doi: 10.4161/rna.29624. Epub 2014 Aug 19.
2
Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
FEBS J. 2014 Apr;281(7):1717-25. doi: 10.1111/febs.12735. Epub 2014 Feb 26.
4
Enhanced Genome Editing Tools For Multi-Gene Deletion Knock-Out Approaches Using Paired CRISPR sgRNAs in CHO Cells.
Biotechnol J. 2018 Mar;13(3):e1700211. doi: 10.1002/biot.201700211. Epub 2017 Nov 13.
5
Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
Nat Biotechnol. 2016 Dec;34(12):1279-1286. doi: 10.1038/nbt.3715. Epub 2016 Oct 31.
6
Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.
Front Plant Sci. 2015 Nov 19;6:1001. doi: 10.3389/fpls.2015.01001. eCollection 2015.
7
CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
mBio. 2015 Jul 21;6(4):e00861. doi: 10.1128/mBio.00861-15.
8
In Vitro CRISPR/Cas9 System for Efficient Targeted DNA Editing.
mBio. 2015 Nov 10;6(6):e01714-15. doi: 10.1128/mBio.01714-15.
9
Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
Fungal Genet Biol. 2017 Oct;107:44-50. doi: 10.1016/j.fgb.2017.08.004. Epub 2017 Aug 16.
10
Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera.
Insect Sci. 2019 Dec;26(6):1029-1036. doi: 10.1111/1744-7917.12570. Epub 2018 Feb 28.

引用本文的文献

1
MEG8 as an antagonistic pleiotropic mechanism in breast cancer.
Cell Death Discov. 2024 Dec 20;10(1):509. doi: 10.1038/s41420-024-02272-0.
2
CRISPR/Cas: An Emerging Toolbox for Engineering Virus Resistance in Plants.
Plants (Basel). 2024 Nov 26;13(23):3313. doi: 10.3390/plants13233313.
3
New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism.
Heliyon. 2024 Oct 23;10(21):e39744. doi: 10.1016/j.heliyon.2024.e39744. eCollection 2024 Nov 15.
4
AAV vector-derived elements integrate into Cas9-generated double-strand breaks and disrupt gene transcription.
Mol Ther. 2024 Nov 6;32(11):4122-4137. doi: 10.1016/j.ymthe.2024.09.032. Epub 2024 Oct 4.
5
A partial deletion within the meiosis-specific sporulation domain SPO22 of Tex11 is not associated with infertility in mice.
PLoS One. 2024 Sep 4;19(9):e0309974. doi: 10.1371/journal.pone.0309974. eCollection 2024.
6
Temporal restriction of Cas9 expression improves CRISPR-mediated deletion efficacy and fidelity.
Mol Ther Nucleic Acids. 2024 Mar 11;35(2):102172. doi: 10.1016/j.omtn.2024.102172. eCollection 2024 Jun 11.
7
Techniques for investigating lncRNA transcript functions in neurodevelopment.
Mol Psychiatry. 2024 Apr;29(4):874-890. doi: 10.1038/s41380-023-02377-5. Epub 2023 Dec 25.
9
Exploring the landscape of tools and resources for the analysis of long non-coding RNAs.
Comput Struct Biotechnol J. 2023 Sep 29;21:4706-4716. doi: 10.1016/j.csbj.2023.09.041. eCollection 2023.
10
RNA circuits and RNA-binding proteins in T cells.
Trends Immunol. 2023 Oct;44(10):792-806. doi: 10.1016/j.it.2023.07.006. Epub 2023 Aug 18.

本文引用的文献

1
Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
FEBS J. 2014 Apr;281(7):1717-25. doi: 10.1111/febs.12735. Epub 2014 Feb 26.
2
One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering.
Int J Biochem Cell Biol. 2014 Jan;46:49-55. doi: 10.1016/j.biocel.2013.10.010. Epub 2013 Nov 20.
3
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.
4
Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair.
Genome Res. 2014 Jan;24(1):142-53. doi: 10.1101/gr.161638.113. Epub 2013 Oct 31.
5
Inheritable and precise large genomic deletions of non-coding RNA genes in zebrafish using TALENs.
PLoS One. 2013 Oct 10;8(10):e76387. doi: 10.1371/journal.pone.0076387. eCollection 2013.
6
RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts.
Nat Rev Mol Cell Biol. 2013 Nov;14(11):699-712. doi: 10.1038/nrm3679. Epub 2013 Oct 9.
7
Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease.
Nucleic Acids Res. 2013 Nov;41(20):e187. doi: 10.1093/nar/gkt772. Epub 2013 Aug 30.
8
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering.
Cell. 2013 Sep 12;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub 2013 Aug 29.
9
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
Nat Biotechnol. 2013 Sep;31(9):839-43. doi: 10.1038/nbt.2673. Epub 2013 Aug 11.
10
Genomic imprinting and parent-of-origin effects on complex traits.
Nat Rev Genet. 2013 Sep;14(9):609-17. doi: 10.1038/nrg3543. Epub 2013 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验