Bogard Matthieu, Ravel Catherine, Paux Etienne, Bordes Jacques, Balfourier François, Chapman Scott C, Le Gouis Jacques, Allard Vincent
INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France.
CSIRO, Queensland Bioscience Precinct - St Lucia, 306 Carmody Road, St Lucia QLD 4067, Australia.
J Exp Bot. 2014 Nov;65(20):5849-65. doi: 10.1093/jxb/eru328. Epub 2014 Aug 22.
Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.
预测小麦物候期有助于选择对特定环境具有特定适应性的品种。然而,虽然抽穗期的QTL分析可以识别控制物候期的主要基因,但结果仅限于所测试的环境和基因型。此外,虽然生态生理模型可以在新环境中进行准确预测,但它们可能需要大量表型数据来对每个基因型进行参数化。而且,模型参数很少与所有潜在基因相关,通过育种可能获得的所有可能等位基因组合无法用模型进行测试。在本研究中,提出了一种基于QTL的模型来预测面包小麦(Triticum aestivum L.)的抽穗期。针对在10种不同地点×播种日期组合下种植的210个基因型,对生态生理模型的两个参数(V sat和P base,分别代表基因型的春化需求和光周期敏感性)进行了优化。用11个和12个相关遗传标记预测V sat和P base的多元线性回归模型分别解释了这些参数变异的71%和68%。基于QTL的V sat和P base估计能够预测一个独立验证数据集(六个地点×播种日期组合中的88个基因型)的抽穗期,预测的均方根误差为5至8.6天,解释了抽穗期变异的48%至63%。本研究中提出的基于QTL的模型可用于农艺目的,并协助育种者提出适合当地的小麦物候理想型。