Suppr超能文献

风险感知控制

Risk-aware control.

作者信息

Sanger Terence D

机构信息

Departments of Biomedical Engineering, Neurology, and Biokinesiology, University of Southern California, Los Angeles, CA 90089, U.S.A.

出版信息

Neural Comput. 2014 Dec;26(12):2669-91. doi: 10.1162/NECO_a_00662. Epub 2014 Aug 22.

Abstract

Human movement differs from robot control because of its flexibility in unknown environments, robustness to perturbation, and tolerance of unknown parameters and unpredictable variability. We propose a new theory, risk-aware control, in which movement is governed by estimates of risk based on uncertainty about the current state and knowledge of the cost of errors. We demonstrate the existence of a feedback control law that implements risk-aware control and show that this control law can be directly implemented by populations of spiking neurons. Simulated examples of risk-aware control for time-varying cost functions as well as learning of unknown dynamics in a stochastic risky environment are provided.

摘要

人类运动与机器人控制不同,因为它在未知环境中具有灵活性、对扰动具有鲁棒性,并且能够容忍未知参数和不可预测的变异性。我们提出了一种新理论——风险感知控制,其中运动由基于当前状态不确定性和错误成本知识的风险估计来支配。我们证明了存在一种实现风险感知控制的反馈控制律,并表明这种控制律可以由脉冲神经元群体直接实现。文中提供了时变成本函数的风险感知控制模拟示例,以及在随机风险环境中未知动力学的学习示例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验