Suppr超能文献

通过数据驱动的功能同源性检测进行种间通路扰动预测。

Inter-species pathway perturbation prediction via data-driven detection of functional homology.

作者信息

Hafemeister Christoph, Romero Roberto, Bilal Erhan, Meyer Pablo, Norel Raquel, Rhrissorrakrai Kahn, Bonneau Richard, Tarca Adi L

机构信息

Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.

Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY 10003, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI 48201, USA, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, Computer Science Department, Courant institute of Mathematical Sciences, New York University, New York, NY 10012 and Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.

出版信息

Bioinformatics. 2015 Feb 15;31(4):501-8. doi: 10.1093/bioinformatics/btu570. Epub 2014 Aug 22.

Abstract

MOTIVATION

Experiments in animal models are often conducted to infer how humans will respond to stimuli by assuming that the same biological pathways will be affected in both organisms. The limitations of this assumption were tested in the IMPROVER Species Translation Challenge, where 52 stimuli were applied to both human and rat cells and perturbed pathways were identified. In the Inter-species Pathway Perturbation Prediction sub-challenge, multiple teams proposed methods to use rat transcription data from 26 stimuli to predict human gene set and pathway activity under the same perturbations. Submissions were evaluated using three performance metrics on data from the remaining 26 stimuli.

RESULTS

We present two approaches, ranked second in this challenge, that do not rely on sequence-based orthology between rat and human genes to translate pathway perturbation state but instead identify transcriptional response orthologs across a set of training conditions. The translation from rat to human accomplished by these so-called direct methods is not dependent on the particular analysis method used to identify perturbed gene sets. In contrast, machine learning-based methods require performing a pathway analysis initially and then mapping the pathway activity between organisms. Unlike most machine learning approaches, direct methods can be used to predict the activation of a human pathway for a new (test) stimuli, even when that pathway was never activated by a training stimuli.

AVAILABILITY

Gene expression data are available from ArrayExpress (accession E-MTAB-2091), while software implementations are available from http://bioinformaticsprb.med.wayne.edu?p=50 and http://goo.gl/hJny3h.

CONTACT

christoph.hafemeister@nyu.edu or atarca@med.wayne.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

动物模型实验通常通过假设人类和动物体内相同的生物途径会受到影响,来推断人类对刺激的反应。在IMPROVER物种翻译挑战赛中对这一假设的局限性进行了测试,该挑战赛对人类和大鼠细胞施加了52种刺激,并确定了受干扰的途径。在种间途径扰动预测子挑战赛中,多个团队提出了利用来自26种刺激的大鼠转录数据来预测相同扰动下人类基因集和途径活性的方法。使用针对其余26种刺激的数据的三个性能指标对提交的结果进行了评估。

结果

我们提出了两种在此挑战赛中排名第二的方法,这两种方法不依赖大鼠和人类基因之间基于序列的直系同源性来翻译途径扰动状态,而是在一组训练条件下识别转录反应直系同源物。这些所谓的直接方法从大鼠到人类的翻译不依赖于用于识别受干扰基因集的特定分析方法。相比之下,基于机器学习的方法需要首先进行途径分析,然后在生物体之间映射途径活性。与大多数机器学习方法不同,直接方法可用于预测新的(测试)刺激下人类途径的激活,即使该途径从未被训练刺激激活过。

可用性

基因表达数据可从ArrayExpress获取(登录号E-MTAB-2091),而软件实现可从http://bioinformaticsprb.med.wayne.edu?p=50和http://goo.gl/hJny3h获取。

联系方式

christoph.hafemeister@nyu.eduatarca@med.wayne.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

本文引用的文献

8
Multi-species integrative biclustering.多物种综合二分聚类。
Genome Biol. 2010;11(9):R96. doi: 10.1186/gb-2010-11-9-r96. Epub 2010 Sep 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验