Suppr超能文献

理解动物模型作为人类生物学预测指标的局限性:从sbv IMPROVER物种转化挑战赛中汲取的经验教训。

Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge.

作者信息

Rhrissorrakrai Kahn, Belcastro Vincenzo, Bilal Erhan, Norel Raquel, Poussin Carine, Mathis Carole, Dulize Rémi H J, Ivanov Nikolai V, Alexopoulos Leonidas, Rice J Jeremy, Peitsch Manuel C, Stolovitzky Gustavo, Meyer Pablo, Hoeng Julia

机构信息

IBM T.J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY 10003, USA, Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland, Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy, ProtATonce Ltd, Scientific Park Lefkippos, Patriarchou Grigoriou & Neapoleos 15343 Ag. Paraskevi, Attiki and National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece.

IBM T.J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY 10003, USA, Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland, Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy, ProtATonce Ltd, Scientific Park Lefkippos, Patriarchou Grigoriou & Neapoleos 15343 Ag. Paraskevi, Attiki and National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece IBM T.J. Watson Research Center, Computational Biology Center, Yorktown Heights, NY 10003, USA, Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland, Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy, ProtATonce Ltd, Scientific Park Lefkippos, Patriarchou Grigoriou & Neapoleos 15343 Ag. Paraskevi, Attiki and National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece.

出版信息

Bioinformatics. 2015 Feb 15;31(4):471-83. doi: 10.1093/bioinformatics/btu611. Epub 2014 Sep 17.

Abstract

MOTIVATION

Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and 'translating' those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species.

CONTACT

pmeyerr@us.ibm.com or Julia.Hoeng@pmi.com

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

推断人类如何对诸如药物、化学物质、病毒或激素等外部线索做出反应是生物医学中的一个基本问题。然而,这个问题常常无法得到解决,因为无法在人体上进行实验。一个合理的替代方法是在动物模型中产生反应并将这些结果“转化”到人类身上。然而,这种转化的局限性还远不清楚,迫切需要对其实际潜力进行系统评估。sbv IMPROVER(研究过程验证的工业方法的系统生物学验证)被设计为一系列挑战,以解决人类和啮齿动物之间的可转化性问题。这个协作式众包计划邀请了来自世界各地的科学家,让他们将自己的计算方法应用于一个多层系统生物学数据集,该数据集由磷酸化蛋白质组学、转录组学和细胞因子数据组成,这些数据来自在相同条件下同时暴露于52种不同刺激的正常人类和大鼠支气管上皮细胞。我们的目标是了解在生物组织的不同层次上物种间可转化性的限度:信号传导、转录以及分泌因子(如细胞因子)的释放。参与团队针对这些子挑战提交了49种不同的解决方案,其中三分之二在统计学上显著优于随机结果。此外,发现在同一挑战中,类似的计算方法在性能上差异很大,没有一种方法在所有子挑战中都脱颖而出成为明显的赢家。最后,计算方法能够比物种间预期的反应相似性更有效地转化肺上皮系统中的一些特定刺激和生物学过程,如DNA合成、细胞骨架和细胞外基质、翻译、免疫/炎症以及生长因子/增殖途径。

联系方式

pmeyerr@us.ibm.comJulia.Hoeng@pmi.com

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b320/4325540/fa8c1a4ee498/btu611f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验