University of California, Davis.
Multivariate Behav Res. 2021 Mar-Apr;56(2):288-302. doi: 10.1080/00273171.2019.1672516. Epub 2019 Nov 1.
Network models are gaining popularity as a way to estimate direct effects among psychological variables and investigate the structure of constructs. A key feature of network estimation is determining which edges are likely to be non-zero. In psychology, this is commonly achieved through the graphical lasso regularization method that estimates a precision matrix of Gaussian variables using an -penalty to push small values to zero. A tuning parameter, , controls the sparsity of the network. There are many methods to select , which can lead to vastly different graphs. The most common approach in psychological network applications is to minimize the extended Bayesian information criterion, but the consistency of this method for model selection has primarily been examined in high dimensional settings (i.e., <) that are uncommon in psychology. Further, there is some evidence that alternative selection methods may have superior performance. Here, using simulation, we compare four different methods for selecting , including the stability approach to regularization selection (StARS), K-fold cross-validation, the rotation information criterion (RIC), and the extended Bayesian information criterion (EBIC). Our results demonstrate that penalty parameter selection should be made based on data characteristics and the inferential goal (e.g., to increase sensitivity versus to avoid false positives). We end with recommendations for selecting the penalty parameter when using the graphical lasso.
网络模型作为一种估计心理变量之间直接效应并研究结构构念的方法,越来越受欢迎。网络估计的一个关键特征是确定哪些边可能是非零的。在心理学中,这通常通过图形套索正则化方法来实现,该方法使用 - 惩罚来将小值推到零,从而估计高斯变量的精度矩阵。一个调整参数 控制网络的稀疏度。有许多方法可以选择 ,这可能会导致截然不同的图形。在心理网络应用中,最常见的方法是最小化扩展贝叶斯信息准则,但这种方法在模型选择方面的一致性主要在高维设置(即 <)中进行了检查,这种设置在心理学中并不常见。此外,有一些证据表明,替代选择方法可能具有更好的性能。在这里,我们使用模拟比较了四种不同的选择 的方法,包括正则化选择的稳定性方法(StARS)、K 折交叉验证、旋转信息准则(RIC)和扩展贝叶斯信息准则(EBIC)。我们的结果表明,应根据数据特征和推理目标(例如,提高敏感性与避免假阳性)来选择惩罚参数。最后,我们在使用图形套索时提出了选择惩罚参数的建议。