Oslund Rob C, Kee Jung-Min, Couvillon Anthony D, Bhatia Vivek N, Perlman David H, Muir Tom W
Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States.
J Am Chem Soc. 2014 Sep 17;136(37):12899-911. doi: 10.1021/ja507614f. Epub 2014 Sep 8.
Protein histidine phosphorylation is increasingly recognized as a critical posttranslational modification (PTM) in central metabolism and cell signaling. Still, the detection of phosphohistidine (pHis) in the proteome has remained difficult due to the scarcity of tools to enrich and identify this labile PTM. To address this, we report the first global proteomic analysis of pHis proteins, combining selective immunoenrichment of pHis peptides and a bioinformatic strategy based on mechanistic insight into pHis peptide gas-phase fragmentation during LC-MS/MS. We show that collision-induced dissociation (CID) of pHis peptides produces prominent characteristic neutral losses of 98, 80, and 116 Da. Using isotopic labeling studies, we also demonstrate that the 98 Da neutral loss occurs via gas-phase phosphoryl transfer from pHis to the peptide C-terminal α-carboxylate or to Glu/Asp side chain residues if present. To exploit this property, we developed a software tool that screens LC-MS/MS spectra for potential matches to pHis-containing peptides based on their neutral loss pattern. This tool was integrated into a proteomics workflow for the identification of endogenous pHis-containing proteins in cellular lysates. As an illustration of this strategy, we analyzed pHis peptides from glycerol-fed and mannitol-fed Escherichia coli cells. We identified known and a number of previously speculative pHis sites inferred by homology, predominantly in the phosphoenolpyruvate:sugar transferase system (PTS). Furthermore, we identified two new sites of histidine phosphorylation on aldehyde-alcohol dehydrogenase (AdhE) and pyruvate kinase (PykF) enzymes, previously not known to bear this modification. This study lays the groundwork for future pHis proteomics studies in bacteria and other organisms.
蛋白质组氨酸磷酸化日益被认为是中心代谢和细胞信号传导中一种关键的翻译后修饰(PTM)。然而,由于富集和鉴定这种不稳定PTM的工具匮乏,蛋白质组中磷酸组氨酸(pHis)的检测仍然困难重重。为解决这一问题,我们报告了首次对pHis蛋白进行的全蛋白质组分析,该分析结合了pHis肽段的选择性免疫富集以及基于对液相色谱 - 串联质谱(LC-MS/MS)过程中pHis肽段气相碎裂机制深入了解的生物信息学策略。我们发现,pHis肽段的碰撞诱导解离(CID)会产生98、80和116 Da的显著特征性中性丢失。通过同位素标记研究,我们还证明98 Da的中性丢失是通过气相磷酸基从pHis转移至肽段C端α - 羧基或(若存在)Glu/Asp侧链残基而发生的。为利用这一特性,我们开发了一种软件工具,该工具基于其中性丢失模式筛选LC-MS/MS谱图,以寻找与含pHis肽段的潜在匹配。此工具被整合到蛋白质组学工作流程中,用于鉴定细胞裂解物中内源性含pHis的蛋白质。作为该策略的一个实例,我们分析了甘油喂养和甘露醇喂养的大肠杆菌细胞中的pHis肽段。我们鉴定出了已知的以及一些通过同源性推断出的先前推测的pHis位点,主要存在于磷酸烯醇丙酮酸:糖转运酶系统(PTS)中。此外,我们还鉴定出醛醇脱氢酶(AdhE)和丙酮酸激酶(PykF)酶上两个新的组氨酸磷酸化位点,此前未知这些酶会发生这种修饰。这项研究为未来细菌和其他生物体中的pHis蛋白质组学研究奠定了基础。