Atias Nir, Gershenzon Michal, Labazin Katia, Sharan Roded
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
Bioinformatics. 2014 Sep 1;30(17):i445-52. doi: 10.1093/bioinformatics/btu451.
A holy grail of biological research is a working model of the cell. Current modeling frameworks, especially in the protein-protein interaction domain, are mostly topological in nature, calling for stronger and more expressive network models. One promising alternative is logic-based or Boolean network modeling, which was successfully applied to model signaling regulatory circuits in human. Learning such models requires observing the system under a sufficient number of different conditions. To date, the amount of measured data is the main bottleneck in learning informative Boolean models, underscoring the need for efficient experimental design strategies.
We developed novel design approaches that greedily select an experiment to be performed so as to maximize the difference or the entropy in the results it induces with respect to current best-fit models. Unique to our maximum difference approach is the ability to account for all (possibly exponential number of) Boolean models displaying high fit to the available data. We applied both approaches to simulated and real data from the EFGR and IL1 signaling systems in human. We demonstrate the utility of the developed strategies in substantially improving on a random selection approach. Our design schemes highlight the redundancy in these datasets, leading up to 11-fold savings in the number of experiments to be performed.
Source code will be made available upon acceptance of the manuscript.
细胞的工作模型是生物学研究的圣杯。当前的建模框架,尤其是在蛋白质-蛋白质相互作用领域,本质上大多是拓扑结构的,需要更强大、更具表现力的网络模型。一种有前途的替代方法是基于逻辑或布尔网络建模,它已成功应用于人类信号调节电路的建模。学习此类模型需要在足够数量的不同条件下观察系统。迄今为止,测量数据量是学习信息丰富的布尔模型的主要瓶颈,这凸显了高效实验设计策略的必要性。
我们开发了新颖的设计方法,通过贪婪地选择要进行的实验,以最大化其相对于当前最佳拟合模型所诱导结果的差异或熵。我们的最大差异方法的独特之处在于能够考虑所有(可能呈指数级数量的)与可用数据高度拟合的布尔模型。我们将这两种方法应用于来自人类EGFR和IL1信号系统的模拟数据和真实数据。我们证明了所开发策略在显著改进随机选择方法方面的效用。我们的设计方案突出了这些数据集中的冗余性,可将所需实验数量节省多达11倍。
稿件接受后将提供源代码。