Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London, United Kingdom.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15746-51. doi: 10.1073/pnas.1117073109. Epub 2012 Sep 11.
We introduce a procedure for deciding when a mass-action model is incompatible with observed steady-state data that does not require any parameter estimation. Thus, we avoid the difficulties of nonlinear optimization typically associated with methods based on parameter fitting. Instead, we borrow ideas from algebraic geometry to construct a transformation of the model variables such that any set of steady states of the model under that transformation lies on a common plane, irrespective of the values of the model parameters. Model rejection can then be performed by assessing the degree to which the transformed data deviate from coplanarity. We demonstrate our method by applying it to models of multisite phosphorylation and cell death signaling. Our framework offers a parameter-free perspective on the statistical model selection problem, which can complement conventional statistical methods in certain classes of problems where inference has to be based on steady-state data and the model structures allow for suitable algebraic relationships among the steady-state solutions.
我们介绍了一种决策方法,用于确定质量作用模型与观测到的稳态数据不兼容的情况,而无需进行任何参数估计。因此,我们避免了通常与基于参数拟合的方法相关的非线性优化的困难。相反,我们借鉴了代数几何的思想,构建了模型变量的变换,使得在该变换下模型的任何一组稳态点都位于共同的平面上,而与模型参数的值无关。然后,可以通过评估变换后数据偏离共面的程度来进行模型拒绝。我们通过将其应用于多部位磷酸化和细胞死亡信号转导的模型来演示我们的方法。我们的框架为统计模型选择问题提供了一种无参数的视角,它可以在某些类型的问题中补充传统的统计方法,在这些问题中,推断必须基于稳态数据,并且模型结构允许稳态解之间存在适当的代数关系。