Suppr超能文献

通过具有L1正则化的状态空间模型整合多源生物学知识来推断基因调控网络。

Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.

作者信息

Hasegawa Takanori, Yamaguchi Rui, Nagasaki Masao, Miyano Satoru, Imoto Seiya

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan.

Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

出版信息

PLoS One. 2014 Aug 27;9(8):e105942. doi: 10.1371/journal.pone.0105942. eCollection 2014.

Abstract

Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid kinetics/dynamics, literature-recorded pathways and transcription factor (TF) information.

摘要

全面理解基因调控网络(GRNs)是系统生物学领域的一项重大挑战。目前,在利用时间序列观测数据进行GRN分析时,主要有两种方法,即基于常微分方程(ODE)的方法和基于统计模型的方法。基于ODE的方法可以根据经过生物学验证的非线性模型生成GRNs的复杂动态。然而,由于计算困难,它不能应用于十个或更多基因以同时估计系统动态和调控关系。基于统计模型的方法使用高度抽象的模型来简单描述生物系统,并从数据中推断数百个基因之间的关系。然而,这种高度抽象会产生生物学上不允许的错误调控。因此,当处理关系部分已知的几十个基因时,迫切需要一种能够基于低抽象模型推断调控关系,并能在纳入先验知识的同时模拟基于ODE模型动态的方法。为了实现这一点,我们提出了一种使用具有L1正则化的向量自回归(VAR)模型的状态空间表示来推断GRNs的方法。该方法可以基于从基于ODE的模型构建的线性时间序列建模来估计基因的动态行为,并能推断几十个基因之间的调控结构,以最大化对观测数据的预测能力。此外,该方法能够纳入各种类型的现有生物学知识,例如药物动力学和文献记录的途径。通过与几种先前方法的模拟研究比较,展示了所提出方法的有效性。作为一个应用实例,我们评估了大鼠在皮质类固醇刺激下随时间的mRNA表达谱,从而纳入了皮质类固醇动力学/动态、文献记录的途径和转录因子(TF)信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验