Suppr超能文献

血小板中PIKfyve的缺失会导致一种溶酶体疾病,进而在小鼠体内引发炎症和血栓形成。

Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice.

作者信息

Min Sang H, Suzuki Aae, Stalker Timothy J, Zhao Liang, Wang Yuhuan, McKennan Chris, Riese Matthew J, Guzman Jessica F, Zhang Suhong, Lian Lurong, Joshi Rohan, Meng Ronghua, Seeholzer Steven H, Choi John K, Koretzky Gary, Marks Michael S, Abrams Charles S

机构信息

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.

出版信息

Nat Commun. 2014 Sep 2;5:4691. doi: 10.1038/ncomms5691.

Abstract

PIKfyve is essential for the synthesis of phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] and for the regulation of endolysosomal membrane dynamics in mammals. PtdIns(3,5)P2 deficiency causes neurodegeneration in mice and humans, but the role of PtdIns(3,5)P2 in non-neural tissues is poorly understood. Here we show that platelet-specific ablation of PIKfyve in mice leads to accelerated arterial thrombosis, and, unexpectedly, also to inappropriate inflammatory responses characterized by macrophage accumulation in multiple tissues. These multiorgan defects are attenuated by platelet depletion in vivo, confirming that they reflect a platelet-specific process. PIKfyve ablation in platelets induces defective maturation and excessive storage of lysosomal enzymes that are released upon platelet activation. Impairing lysosome secretion from PIKfyve-null platelets in vivo markedly attenuates the multiorgan defects, suggesting that platelet lysosome secretion contributes to pathogenesis. Our findings identify PIKfyve as an essential regulator for platelet lysosome homeostasis, and demonstrate the contributions of platelet lysosomes to inflammation, arterial thrombosis and macrophage biology.

摘要

PIKfyve对于哺乳动物中磷脂酰肌醇-3,5-二磷酸[PtdIns(3,5)P2]的合成以及内溶酶体膜动力学的调节至关重要。PtdIns(3,5)P2缺乏会导致小鼠和人类发生神经退行性变,但PtdIns(3,5)P2在非神经组织中的作用却知之甚少。在此我们表明,小鼠血小板特异性敲除PIKfyve会导致动脉血栓形成加速,而且出乎意料的是,还会引发以多种组织中巨噬细胞积聚为特征的不适当炎症反应。体内血小板减少可减轻这些多器官缺陷,证实它们反映的是一个血小板特异性过程。血小板中PIKfyve的敲除会导致溶酶体酶成熟缺陷和过度储存,这些酶在血小板激活时会释放出来。体内抑制PIKfyve基因敲除血小板的溶酶体分泌可显著减轻多器官缺陷,表明血小板溶酶体分泌参与了发病机制。我们的研究结果确定PIKfyve是血小板溶酶体稳态的关键调节因子,并证明了血小板溶酶体对炎症、动脉血栓形成和巨噬细胞生物学的作用。

相似文献

3
PIKfyve-Dependent Phosphoinositide Dynamics in Megakaryocyte/Platelet Granule Integrity and Platelet Functions.
Arterioscler Thromb Vasc Biol. 2022 Aug;42(8):987-1004. doi: 10.1161/ATVBAHA.122.317559. Epub 2022 Jun 16.
8
PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages.
Traffic. 2014 Oct;15(10):1143-63. doi: 10.1111/tra.12199. Epub 2014 Aug 16.
9
The Lipid Kinase PIKfyve Coordinates the Neutrophil Immune Response through the Activation of the Rac GTPase.
J Immunol. 2017 Sep 15;199(6):2096-2105. doi: 10.4049/jimmunol.1601466. Epub 2017 Aug 4.

引用本文的文献

1
3
Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling.
Cells. 2024 May 30;13(11):953. doi: 10.3390/cells13110953.
4
Identification and Utilization of a Chemical Probe to Interrogate the Roles of PIKfyve in the Lifecycle of β-Coronaviruses.
J Med Chem. 2022 Oct 13;65(19):12860-12882. doi: 10.1021/acs.jmedchem.2c00697. Epub 2022 Sep 16.
5
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer.
Biomedicines. 2022 Jul 22;10(8):1778. doi: 10.3390/biomedicines10081778.
6
Signaling Through FcγRIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19.
Front Immunol. 2022 Mar 3;13:834988. doi: 10.3389/fimmu.2022.834988. eCollection 2022.
7
Loss of PIKfyve drives the spongiform degeneration in prion diseases.
EMBO Mol Med. 2021 Sep 7;13(9):e14714. doi: 10.15252/emmm.202114714. Epub 2021 Jul 22.
8
Dissecting lipid metabolism alterations in SARS-CoV-2.
Prog Lipid Res. 2021 Apr;82:101092. doi: 10.1016/j.plipres.2021.101092. Epub 2021 Feb 8.
9
Phosphoinositides in autophagy: current roles and future insights.
FEBS J. 2020 Jan;287(2):222-238. doi: 10.1111/febs.15127. Epub 2019 Nov 21.

本文引用的文献

1
Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance.
Bioessays. 2014 Jan;36(1):52-64. doi: 10.1002/bies.201300012. Epub 2013 Oct 28.
2
Phosphatidylinositol-3,5-bisphosphate: metabolism and physiological functions.
J Biochem. 2013 Sep;154(3):211-8. doi: 10.1093/jb/mvt064. Epub 2013 Jul 15.
3
Regulation of platelet plug formation by phosphoinositide metabolism.
Blood. 2013 Aug 22;122(8):1358-65. doi: 10.1182/blood-2013-05-427716. Epub 2013 Jun 11.
4
Lysosome-related organelles: unusual compartments become mainstream.
Curr Opin Cell Biol. 2013 Aug;25(4):495-505. doi: 10.1016/j.ceb.2013.04.008. Epub 2013 May 29.
5
Signals from the lysosome: a control centre for cellular clearance and energy metabolism.
Nat Rev Mol Cell Biol. 2013 May;14(5):283-96. doi: 10.1038/nrm3565.
7
Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis.
Pigment Cell Melanoma Res. 2013 Mar;26(2):176-92. doi: 10.1111/pcmr.12051. Epub 2012 Dec 31.
8
In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17472-7. doi: 10.1073/pnas.1203106109. Epub 2012 Oct 9.
9
Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system.
Blood. 2012 Nov 8;120(19):4072-81. doi: 10.1182/blood-2012-04-420745. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验