Laboratoire de Chimie moléculaire, génie des procédés chimiques et énergétiques (CMGPCE), Conservatoire national des arts et métiers (Cnam) , 2 rue Conté, 75003 Paris, France.
J Chem Inf Model. 2014 Oct 27;54(10):2718-31. doi: 10.1021/ci500346w. Epub 2014 Sep 18.
Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources).
镧系元素(III)配合物是磁共振成像(MRI)中使用的最大一类化合物作为对比剂。一种基于定量构效关系(QSAR)机器学习的方法被应用于预测这些配合物的热力学稳定常数(log KGdL),该性质通常与这些有机金属药物的毒性有关。在这种方法中,每个配合物的 log KGdL 值由图机预测,图机是一种参数化函数的组合,它编码配体的 2D 结构。通过独立测试集来评估预测模型的效率;此外,该方法被证明是有效的,(i)用于估计新合成的多氨基多羧酸化合物的稳定常数,这些化合物尚未进行特征描述,(ii)对于报告了相互矛盾或有问题的实验数据的配合物,可以提供独立的 log KGdL 估计值。在本研究中使用的、用于磁共振成像对比剂的潜在应用的 158 种配合物的 log KGdL 值的详尽数据库,可从支持信息中获得(122 个主要文献来源)。