Suppr超能文献

视杆细胞盘膜中受体 - G 蛋白偶联的显式时空模拟。

Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.

作者信息

Schöneberg Johannes, Heck Martin, Hofmann Klaus Peter, Noé Frank

机构信息

Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany.

Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Biophys J. 2014 Sep 2;107(5):1042-1053. doi: 10.1016/j.bpj.2014.05.050.

Abstract

Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein.

摘要

暗光视觉由视网膜视杆细胞介导。视紫红质(R)是一种G蛋白偶联受体,在吸收单个光子后会转变为其活性形式(R(∗)),并激活多个转导蛋白(G)分子,从而触发光转导级联反应的进一步下游反应。传统假设认为R和G在盘状膜上均匀分布且自由扩散。最近的实验结果对这一观点提出了挑战,实验表明存在特定的R结构,包括RG预复合物、R密度不均匀、特定的R排列以及R的固定部分。在此,我们推导了一个物理模型,该模型在时空细节和单分子分辨率下描述了光激活级联反应的第一步。该模型在用于基于粒子的反应扩散模拟的ReaDDy软件中实现。利用详细的体外动力学实验来确定R和G的反应速率及扩散常数。然后在不同的R-R相互作用条件下研究粒子扩散和G激活。结果发现,传统的自由扩散模型与现有的动力学数据一致。非活性R和G之间预复合物的存在仅在这些预复合物较弱时与数据一致,其解离速率比其他地方所建议的要大得多。R的微结构,如二聚体架,会有效地固定R,但对G的扩散率以及级联反应在G蛋白水平的整体放大影响很小。

相似文献

1
Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.
Biophys J. 2014 Sep 2;107(5):1042-1053. doi: 10.1016/j.bpj.2014.05.050.
2
Effect of the Organization of Rhodopsin on the Association between Transducin and a Photoactivated Receptor.
J Phys Chem B. 2018 Sep 27;122(38):8872-8879. doi: 10.1021/acs.jpcb.8b07401. Epub 2018 Sep 17.
3
Mesoscopic Monte Carlo simulations of stochastic encounters between photoactivated rhodopsin and transducin in disc membranes.
J Phys Chem B. 2008 Apr 10;112(14):4419-26. doi: 10.1021/jp709963f. Epub 2008 Mar 18.
4
Stochastic simulation of the transducin GTPase cycle.
Biophys J. 1996 Dec;71(6):3051-63. doi: 10.1016/S0006-3495(96)79499-7.
5
Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
Structure. 2015 Apr 7;23(4):628-38. doi: 10.1016/j.str.2015.01.015. Epub 2015 Feb 26.
6
A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
FEBS Lett. 2013 Jun 27;587(13):2060-6. doi: 10.1016/j.febslet.2013.05.017. Epub 2013 May 16.
8
ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.
PLoS One. 2013 Sep 11;8(9):e74261. doi: 10.1371/journal.pone.0074261. eCollection 2013.

引用本文的文献

1
A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods.
Comput Struct Biotechnol J. 2021 Jun 23;19:3720-3734. doi: 10.1016/j.csbj.2021.06.033. eCollection 2021.
2
Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
Pflugers Arch. 2021 Sep;473(9):1361-1376. doi: 10.1007/s00424-021-02522-5. Epub 2021 Feb 16.
3
Rhodopsin Oligomerization and Aggregation.
J Membr Biol. 2019 Oct;252(4-5):413-423. doi: 10.1007/s00232-019-00078-1. Epub 2019 Jul 8.
4
ReaDDy 2: Fast and flexible software framework for interacting-particle reaction dynamics.
PLoS Comput Biol. 2019 Feb 28;15(2):e1006830. doi: 10.1371/journal.pcbi.1006830. eCollection 2019 Feb.
6
Excluded volume effects in on- and off-lattice reaction-diffusion models.
IET Syst Biol. 2017 Apr;11(2):55-64. doi: 10.1049/iet-syb.2016.0021.
7
Reaction-diffusion basis of retroviral infectivity.
Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080). doi: 10.1098/rsta.2016.0148.
8
Quaternary structures of opsin in live cells revealed by FRET spectrometry.
Biochem J. 2016 Nov 1;473(21):3819-3836. doi: 10.1042/BCJ20160422. Epub 2016 Sep 13.
9
Molecular basis for photoreceptor outer segment architecture.
Prog Retin Eye Res. 2016 Nov;55:52-81. doi: 10.1016/j.preteyeres.2016.05.003. Epub 2016 Jun 1.

本文引用的文献

1
ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
J Chem Theory Comput. 2009 Jun 9;5(6):1632-9. doi: 10.1021/ct9000685. Epub 2009 May 21.
2
Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022708. doi: 10.1103/PhysRevE.89.022708. Epub 2014 Feb 7.
3
A comprehensive model of the phototransduction cascade in mouse rod cells.
Mol Biosyst. 2014 Jun;10(6):1481-9. doi: 10.1039/c3mb70584f. Epub 2014 Mar 28.
4
Activation and allosteric modulation of a muscarinic acetylcholine receptor.
Nature. 2013 Dec 5;504(7478):101-6. doi: 10.1038/nature12735. Epub 2013 Nov 20.
5
Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.
Biophys J. 2013 Nov 5;105(9):2064-73. doi: 10.1016/j.bpj.2013.07.023.
6
ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.
PLoS One. 2013 Sep 11;8(9):e74261. doi: 10.1371/journal.pone.0074261. eCollection 2013.
7
Precision vs flexibility in GPCR signaling.
J Am Chem Soc. 2013 Aug 21;135(33):12305-12. doi: 10.1021/ja405133k. Epub 2013 Aug 9.
8
Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes.
Faraday Discuss. 2013;161:397-417; discussion 419-59. doi: 10.1039/c2fd20085f.
9
A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
FEBS Lett. 2013 Jun 27;587(13):2060-6. doi: 10.1016/j.febslet.2013.05.017. Epub 2013 May 16.
10
OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation.
J Chem Theory Comput. 2013 Jan 8;9(1):461-469. doi: 10.1021/ct300857j. Epub 2012 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验