Schöneberg Johannes, Heck Martin, Hofmann Klaus Peter, Noé Frank
Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany.
Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany.
Biophys J. 2014 Sep 2;107(5):1042-1053. doi: 10.1016/j.bpj.2014.05.050.
Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein.
暗光视觉由视网膜视杆细胞介导。视紫红质(R)是一种G蛋白偶联受体,在吸收单个光子后会转变为其活性形式(R(∗)),并激活多个转导蛋白(G)分子,从而触发光转导级联反应的进一步下游反应。传统假设认为R和G在盘状膜上均匀分布且自由扩散。最近的实验结果对这一观点提出了挑战,实验表明存在特定的R结构,包括RG预复合物、R密度不均匀、特定的R排列以及R的固定部分。在此,我们推导了一个物理模型,该模型在时空细节和单分子分辨率下描述了光激活级联反应的第一步。该模型在用于基于粒子的反应扩散模拟的ReaDDy软件中实现。利用详细的体外动力学实验来确定R和G的反应速率及扩散常数。然后在不同的R-R相互作用条件下研究粒子扩散和G激活。结果发现,传统的自由扩散模型与现有的动力学数据一致。非活性R和G之间预复合物的存在仅在这些预复合物较弱时与数据一致,其解离速率比其他地方所建议的要大得多。R的微结构,如二聚体架,会有效地固定R,但对G的扩散率以及级联反应在G蛋白水平的整体放大影响很小。