Suppr超能文献

基于光流控平台的适配体偶联荧光纳米粒子快速连续微生物检测

Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform.

机构信息

Center for Environment, Health and Welfare Research, Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.

Center for Environment, Health and Welfare Research, Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.

出版信息

Biosens Bioelectron. 2015 May 15;67:303-8. doi: 10.1016/j.bios.2014.08.039. Epub 2014 Aug 23.

Abstract

Fast and accurate pathogen detection in aquatic environments is challenging in many biomedical studies and microbial diagnostic applications. In this study, we developed a real-time, continuous, and non-destructive single cell detection method using target specific aptamer-conjugated fluorescent nanoparticles (A-FNPs) and an optofluidic particle-sensor platform. A-FNPs selectively bound to the surfaces of target bacteria (Escherichia coli) and labeled them with high affinity and selectivity so that target bacteria can be countable particles in an optofluidic particle-sensor. A-FNP-labeled target bacterial complexes were detected by the optofluidic particle-sensing system, which provides rapid and continuous single-cell detection. A-FNPs selectively bound to E. coli with a dissociation constant of 0.83 nM, but did not bind Enterobacter aerogenes or Citrobacter freundii strains, which lacked affinity for the aptamer used. We demonstrated that our optofluidic device achieves a detection throughput of 100 particles per second with high accuracy (85%) in detecting single bacterial cells conjugated with A-FNPs. This approach can be immediately extended to the real-time, high-throughput detection of other microorganisms such as viruses that are selectively conjugated with A-FNPs. Collectively, these data suggest that optofluidic systems are widely applicable for the fast and continuous detection of microbial cells.

摘要

在许多生物医学研究和微生物诊断应用中,快速准确地检测水生环境中的病原体具有挑战性。在本研究中,我们开发了一种使用靶标特异性适体偶联荧光纳米颗粒(A-FNPs)和光流体颗粒传感器平台的实时、连续和非破坏性单细胞检测方法。A-FNPs 特异性结合到靶标细菌(大肠杆菌)的表面,并以高亲和力和选择性对其进行标记,从而使靶标细菌可以成为光流体颗粒传感器中的可计数颗粒。通过光流体颗粒传感系统检测 A-FNP 标记的靶标细菌复合物,该系统提供快速和连续的单细胞检测。A-FNPs 与 E. coli 的解离常数为 0.83 nM,特异性结合,但与缺乏适体亲和力的 Enterobacter aerogenes 或 Citrobacter freundii 菌株不结合。我们证明,我们的光流体设备在检测与 A-FNPs 偶联的单个细菌细胞时,具有约 100 个/秒的高准确性(约 85%)的检测通量。这种方法可以立即扩展到实时、高通量检测其他微生物,如与 A-FNPs 选择性偶联的病毒。总的来说,这些数据表明光流体系统广泛适用于微生物细胞的快速连续检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验